444 research outputs found
A doping dependent threshold voltage model of uniformly doped short-channel symmetric double-gate (DG) MOSFET’s
The paper presents a doping dependent threshold voltage model for the short-channel double-gate (DG) MOSFETs. The channel potential has been determined by solving the two-dimensional (2D) Poisson’s equation using the parabolic potential approximation in the vertical direction of channel. Threshold voltage sensitivity on acceptor doping and device parameters is discussed in detail. The threshold voltage expression has been modified by incorporating the effects of band gap narrowing for highly doped DG MOSFETs. Quantum mechanical corrections have also been employed in the threshold voltage model. The theoretical results have been compared with the ATLASTM simulation results. The present model is found to be valid for acceptor doping variation from 1014 cm–3 to 5 × 1018cm–3.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2789
3-D Modified Proportional Navigation Guidance Law based on a Total Demand Vector Concept
Different proportional navigation (PN)-based guidance laws-pure proportional navigation (PPN), true proportional navigation (TPN), and proportional navigation with boost accelerationcompensation generally used cannot maintain fundamental parameter of proportional navigation, viz., Navigation constant to the desired value in the presence of significantly high lead angles and missile longitudinal accelerations/decelerations. In a real-life situation with sensor noises and hardware constraints, this navigation constant should be maintained tightly at the selected value, which is generally between 3 and 4, for optimum performance. In this paper; a new 3-D modified PN guidance law based on a total demand vector concept is presented, which can maintain the navigation constant to the designer-selected value for any 3-D engagement scenario with associated lead angles and any velocity profile with missile longitudinal accelerations1 decelerations. Generality of this guidance law is brought out and superiority of this guidance law over the commonly used proportional navigation-based laws like PPN, TPN and PN with boost acceleration compensation has been demonstrated by applying it to the real-life 3-D engagement scenarios of different hypothetical missiles
Radio Frequency Seeker Modelling and Seeker Filter Design
Radio frequency seeker model, including receiver angle error noise modelling and filtering of noise from seeker measurement, is presented in this paper. The effects of eclipsing, radar cross section fluctuation, etc on seeker sight-line rate measurement are highlighted. The formulation for colour noise modelling of sight-line rate noise is derived based on the knowledge of seeker receiver angle error noise model. Two Kalman filter configurations for filtering of noise from seeker output have been considered in this paper, based on sight-line rate kinematics and noise characteristic. It has been observed from the simulation studies that sight-line rate signal varies slowly at higher interceptor-target ranges; with severe colour noise in sight line rate measurement, and therefore higher weightage for noise attenuation is beneficial in Kalman filter configuration. So, kinematic plus state augmentation for colour noise are considered for adequate filtering for higher interceptor-target ranges. Whereas for lower interceptor-target ranges, sight-line rate changes appreciably, which have been tracked by a simplified/modified spherical coordinate model, which uses knowledge of interceptor-target engagement dynamics. For both the filters, benefits of colour noise modelling and process model augmentation through coloured noise states, for filtering severe colour noise of seeker, has been demonstrated
Ontogeny of the digestive tract in stinging catfish, Heteropneustes fossilis (Bloch) larvae
Heteropneustes fossilis (Bloch) is an important candidate species for diversification of freshwater aquaculture in India. However, high mortality rate during larval rearing is the most serious bottleneck in commercial production of this species. A proper understanding of the ontogenic development of digestive system provides the basis to understand the nutritional physiology of larvae and develop appropriate feeding strategies. In the present study, the ontogenical development of the digestive tract in H. fossilis larvae was studied from hatching until 30 day post-hatching (dph) at 29 °C. At hatching (2.8 ± 0.2 mm standard length, SL), the digestive tract was undifferentiated and attached dorsally to the yolk sac. At 1 dph (2.9 ± 0.2 mm SL), the mouth opened and oral valves were visible. At 2 dph (3.0 ± 0.3 mm SL), goblet cells were observed in the buccoparyngaeal cavity. At this age, exogenous feeding started and the intestine was differentiated into the anterior and posterior regions, and the rudimentary liver and pancreas were also seen. Small supranuclear vacuoles were observed in the enterocytes of the posterior intestine at 2 dph. Zymogen granules were observed in acinar cells of pancreas by 3 dph, and islets of Langerhans were visible at 4 dph (3.5 ± 0.1 mm SL). At the same age, most of the yolk sac reserves were consumed, whereas they were completely exhausted by 5 dph (3.9 ± 0.5 mm SL). Between 4 and 6 dph, the liver elongated in size and started to accumulate lipids in the hepatocytes. Gastric glands were detected at 4 dph, and the pyloric sphincter was completely differentiated at 9 dph (6.1 ± 0.4 mm SL) as an epithelial fold that separated stomach from the anterior intestine. By 13 dph (8.6 ± 0.2 mm SL), profuse gastric glands were visible inside longitudinal mucosal folds of the stomach. The formation of gastric glands and their development were noticed as the last events in the development of the digestive tract in H. fossilis. This indicated the end of the larval period and the commencement of the juvenile stage. Considering these observations, it is suggested that H. fossilis larvae have a morphologically complete digestive tract by 13 dph. The findings of the study on the development of the digestive system in H. fossilis may help in synchronising the larval stage of development and feeding strategies and would be helpful in improving larval rearing techniques for catfish species.info:eu-repo/semantics/acceptedVersio
Milk Yield Response of Bypass Protein on Smallholder Dairy Animals
Protein need for small holder dairy animals is very limited. Considering this problem one on-station and one on-farm trails were conducted in 2013 and 2014 in Nepal respectively. In on-station trial (2013) 15 milking buffaloes were randomly assigned to 5 dietary treatments (0, 0.5, 1, 1.5 and 2 kg de-oiled soybean meals/day/buffalo) and in on-farm trial (2014), 20 milking buffaloes were assigned to 0.5 kg de-oiled soybean meal/day/buffalo for two months dry period. From on-station trial, significantly higher (42 %) milk production was observed from 0.5 kg and 1 kg de-oiled soybean meal/day/buffalo feeding groups. From the on-farm trials in village dairy buffaloes 20 percent milk production increment was observed compared with the normal farmer's feeding practices (de-oiled soybean meals unfed condition). It was concluded that, in addition to normal diet, 0.5 to 1 kg de-oiled soybean meal (depending up on the body weight of animal and feeding situation) per day feeding as bypass protein sources could be beneficial during dry period where green fodder is scarce to maintain milk production from dairy animals
Mushy-Zone Rayleigh Number to Describe Macrosegregation and Channel Segregate Formation During Directional Solidification of Metallic Alloys
A recently defined mushy-zone Rayleigh number (R-aM) that includes side-branching contributions to the mushy-zone permeability has been examined for its correlation with the longitudinal macrosegregation and channel segregate formation. The Rayleigh number shows (1) a strong correlation between the extent of longitudinal macrosegregation and increase in the mushy-zone convection and (2) a good ability to predict the formation of channel segregates during directional solidification
Primary Dendrite Distribution and Disorder During Directional Solidification of Pb-Sb Alloys
Pb-2.2 wt pct Sb and Pb-5.8 wt pet Sb alloys have been directionally solidified from a single-crystal seed with its [100] orientation parallel to the growth direction, to examine the primary dendrite distribution and disorder of the dendrite arrays. The dendrite distribution and ordering have been investigated using analysis techniques such as the Gauss-amplitude fit to the frequency distribution of nearest and higher-order spacings, minimum spanning tree (MST), Voronoi polygon, and Fourier transform (FT) of the dendrite centers. Since the arrangement of dendrites is driven by the requirement to accommodate side-branch growth along the (100) directions, the FT images of the fully developed dendrite centers contain spots which indicate this preferred alignment. A directional solidification distance of about three mushy-zone lengths is sufficient to ensure a steady-state dendritic array, in terms of reaching a constant mean primary spacing. However, local dendrite ordering continues throughout the directional solidification process. The interdendritic convection not only decreases the mean primary spacing, it also makes the dendrite array more disordered and reduces the ratio of the upper and lower spacing limits, as defined by the largest 5 pct and the smallest 5 pct of the population
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode
We report a measurement of the ttbar production cross section using the
CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311
pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events
selected with six or more hadronic jets with additional kinematic requirements.
At least one of these jets must be identified as a b-quark jet by the
reconstruction of a secondary vertex. The cross section is measured to be
sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is
consistent with the standard model prediction.Comment: By CDF collaboratio
- …