82 research outputs found
Modelling and inference for the movement of interacting animals
1. Statistical modelling of animal movement data is a rapidly growing area of research. Typically though, these models have been developed for analysing the tracks of individual animals and we lose sight of the impact animals have on each other with regards to their movement behaviours. We aim to develop a model with a flexible social framework that allows us to capture that information.
2. Our approach is based on the concept of social hierarchies, and this is embedded in a multivariate diffusion process which models the movement of a group of animals. The possibility of switching between behavioural states facilitates dynamic social behaviours and we augment the observed data with sampled state switching times in order to model the animals' behaviour naturally in continuous time. In addition, this enables us to carry out exact inference in a Bayesian setting with the benefits of being able to handle regular, irregular and missing data. All movement and behaviour parameters are estimated with Markov chain Monte Carlo methods.
3. We examine the capability of our model with simulated data before fitting it to GPS locations of five wild olive baboons Papio anubis. The results enable us to identify which animals are influencing the movement of others and when, which provides both a dynamic and long-term static insight into the group's social behaviours.
4. Our model offers a flexible method in continuous time with which to model the network of social interactions within animal movement. Doing so avoids the limitations caused by a discrete-time approach and it allows us to capture rich information with regards to a group's social structure, leading to constructive applications in conservation and management decisions. However, currently it is a computationally expensive task to fit the model to data, which in turns limits extending the model to more fruitful but complex cases such as heterogeneity in space or individual characteristics. Furthermore, our social hierarchy approach assumes all relevant animals are tracked and that any interactions have some ordering, both of which narrow the scope within which this approach is appropriate
Robust study design is as important on the social as it is on the ecological side of applied ecological research
1. The effective management of natural systems often requires resource users to change their behaviour. This has led to many applied ecologists using research tools developed by social scientists. This comes with challenges as ecologists often lack relevant disciplinary training.
2. Using an example from the current issue of Journal of Applied Ecology that investigated how conservation interventions influenced conservation outcomes, we discuss the challenges of conducting interdisciplinary science. We illustrate our points using examples from research investigating the role of law enforcement and outreach activities in limiting illegal poaching
and the application of the theory of planned behaviour to conservation.
3. Synthesis and applications. Interdisciplinary research requires equal rigour to be applied to ecological and social aspects. Researchers with a natural science background need to access expertise and training in the principles of social science research design and methodology, in order to permit a more balanced interdisciplinary understanding of social–ecological system
Quantifying the short-term costs of conservation interventions for fishers at Lake Alaotra, Madagascar
Artisanal fisheries are a key source of food and income for millions of people, but if poorly managed, fishing can have declining returns as well as impacts on biodiversity. Management interventions such as spatial and temporal closures can improve fishery sustainability and reduce environmental degradation, but may carry substantial short-term costs for fishers. The Lake Alaotra wetland in Madagascar supports a commercially important artisanal fishery and provides habitat for a Critically Endangered primate and other endemic wildlife of conservation importance. Using detailed data from more than 1,600 fisher catches, we used linear mixed effects models to explore and quantify relationships between catch weight, effort, and spatial and temporal restrictions to identify drivers of fisher behaviour and quantify the potential effect of fishing restrictions on catch. We found that restricted area interventions and fishery closures would generate direct short-term costs through reduced catch and income, and these costs vary between groups of fishers using different gear. Our results show that conservation interventions can have uneven impacts on local people with different fishing strategies. This information can be used to formulate management strategies that minimise the adverse impacts of interventions, increase local support and compliance, and therefore maximise conservation effectiveness
In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi Nuclear Power Plant
AbstractTraditional methods to locate and subsequently study radioactive fallout particles have focused heavily on autoradiography coupled with in-situ analytical techniques. Presented here is the application of a Variable Pressure Scanning Electron Microscope with both backscattered electron and energy dispersive spectroscopy detectors, along with a micromanipulator setup and electron-hardening adhesive to isolate and remove individual particles before synchrotron radiation analysis. This system allows for a greater range of new and existing analytical techniques, at increased detail and speed, to be applied to the material. Using this method, it was possible to erform detailed energy dispersive spectroscopy and synchrotron radiation characterisation of material likely ejected from the Fukushima Daiichi Nuclear Power Plant found within a sediment sample collected from the edge of the 30km exclusion zone. Particulate material sub-micron in maximum dimension examined during this work via energy dispersive spectroscopy was observed to contain uranium at levels between 19.68 and 28.35 weight percent, with the application of synchrotron radiation spectroscopy confirming its presence as a major constituent.With great effort and cost being devoted to the remediation of significant areas of eastern Japan affected by the incident, it is crucial to gain the greatest possible understanding of the nature of this contamination in order to inform the most appropriate clean-up response
Modelling group movement with behaviour switching in continuous time
This article presents a new method for modelling collective movement in continuous time with behavioural switching, motivated by simultaneous tracking of wild or semi‐domesticated animals. Each individual in the group is at times attracted to a unobserved leading point. However, the behavioural state of each individual can switch between ‘following’ and ‘independent’. The ‘following’ movement is modelled through a linear stochastic differential equation, while the ‘independent’ movement is modelled as Brownian motion. The movement of the leading point is modelled either as an Ornstein‐Uhlenbeck (OU) process or as Brownian motion (BM), which makes the whole system a higher‐dimensional Ornstein‐Uhlenbeck process, possibly an intrinsic non‐stationary version. An inhomogeneous Kalman filter Markov chain Monte Carlo algorithm is developed to estimate the diffusion and switching parameters and the behaviour states of each individual at a given time point. The method successfully recovers the true behavioural states in simulated data sets , and is also applied to model a group of simultaneously tracked reindeer (Rangifer tarandus)
Net Gain: Seeking better outcomes for local people when mitigating biodiversity loss from development
Economic development projects are increasingly applying the mitigation hierarchy to achieve No Net Loss, or even a Net Gain, of biodiversity. Because people value biodiversity and ecosystem services, this can affect the wellbeing of local people, however these types of social impacts from development receive limited consideration. We present ethical, practical and regulatory reasons why development projects applying the mitigation hierarchy should consider related social impacts. We highlight risks to local wellbeing where projects restrict access to biodiversity and ecosystem services in biodiversity offsets. We then present a framework laying out challenges and associated opportunities for delivering better biodiversity and local wellbeing outcomes. Greater coordination between social and biodiversity experts, and early and effective integration of local people in the process, will ensure that efforts to reduce the negative impacts of development on biodiversity can contribute to, rather than detract from, local people’s wellbeing
A Stochastic Broadcast Pi-Calculus
In this paper we propose a stochastic broadcast PI-calculus which can be used
to model server-client based systems where synchronization is always governed
by only one participant. Therefore, there is no need to determine the joint
synchronization rates. We also take immediate transitions into account which is
useful to model behaviors with no impact on the temporal properties of a
system. Since immediate transitions may introduce non-determinism, we will show
how these non-determinism can be resolved, and as result a valid CTMC will be
obtained finally. Also some practical examples are given to show the
application of this calculus.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Probing the DeltaNN component of 3He
The 3He(gamma,pi^+/- p) reactions were measured simultaneously over a tagged
photon energy range of 800<E_gamma<1120 MeV, well above the Delta resonance
region. An analysis was performed to kinematically isolate Delta knockout
events from conventional Delta photoproduction events, and a statistically
significant excess of pi+p events was identified, consistent with Delta++
knockout. Two methods were used to estimate the DeltaNN probability in the 3He
ground state, corresponding to the observed knockout cross section. The first
gave a lower probability limit of 1.5+/-0.6+/-0.5%; the second yielded an upper
limit of about 2.6%.Comment: 14 page
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
- …