200 research outputs found

    Precise measurements of radio-frequency magnetic susceptibility in (anti)ferromagnetic materials

    Full text link
    Dynamic magnetic susceptibility, χ\chi, was studied in several intermetallic materials exhibiting ferromagnetic, antiferromagnetic and metamagnetic transitions. Precise measurements by using a 14 MHz tunnel diode oscillator (TDO) allow detailed insight into the field and temperature dependence of χ\chi. In particular, local moment ferromagnets show a sharp peak in χ(T)\chi(T) near the Curie temperature, TcT_c. The peak amplitude decreases and shifts to higher temperatures with very small applied dc fields. Anisotropic measurements of CeVSb3_3 show that this peak is present provided the magnetic easy axis is aligned with the excitation field. In a striking contrast, small moment, itinerant ferromagnets (i.e., ZrZn2_2) show a broad maximum in χ(T)\chi(T) that responds differently to applied field. We believe that TDO measurements provide a very sensitive way to distinguish between local and itinerant moment magnetic orders. Local moment antiferromagnets do not show a peak at the N\'eel temperature, TNT_N, but only a sharp decrease of χ\chi below TNT_N due to the loss of spin-disorder scattering changing the penetration depth of the ac excitation field. Furthermore, we show that the TDO is capable of detecting changes in spin order as well as metamagnetic transitions. Finally, critical scaling of χ(T,H)\chi(T,H) in the vicinity of TCT_C is discussed in CeVSb3_3 and CeAgSb2_2

    AGENDA: Two Decades of Water Law and Policy Reform: A Retrospective and Agenda for the Future

    Get PDF
    1 v. (various pagings) ; 29 cm Sponsors: Hydrosphere Resource Consultants; Modrall, Sperling, Roehl, Harris & Sisk, P.A.; Patrick & Stowell, P.C.; Perkins Coie LLP; The William and Flora Hewlett Foundation. Conference speakers, moderators and/or panelists included University of Colorado School of Law professors Gary C. Bryner, Douglas S. Kenney, Sarah Krakoff, Kathryn Mutz, David H. Getches, Lawrence J. MacDonnell and James N. Corbridge, Jr. Includes bibliographical references The conference will examine the agenda for reforming and improving water law that has developed during the past two decades in the West, assesses what has (and has not) been accomplished by pursuing these reforms, and explores lessons and implications for future water law and policy. The papers and discussion will provide analysis and lessons that can guide the new administration, Congress, federal agencies, state governments, and communities as they seek to find policy solutions to the challenges posed by the tremendous economic and demographic changes occurring in the West, in order to ensure the sustainability of the region\u27s unique environment. Specific sessions will focus on reforms such as improving the scientific and technical basis for water management, water conservation and efficiency, protecting environmental values in meeting water demands, and creating new models of governance for water issues

    Darkness visible: reflections on underground ecology

    Get PDF
    1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes

    AGENDA: Hard Times on the Colorado River: Drought, Growth and the Future of the Compact

    Get PDF
    Sponsors and Contributors: Colorado Water Conservation Board, Center for Advanced Decision Support for Water and Environmental Systems, Western Water Assessment, CU-CIRES/NOAA, Hydrosphere Resource Consultants, Rocky Mountain Mineral Law Foundation, Colorado Foundation for Water Education, Patrick, Miller & Kropf, P.C., William and Flora Hewlett Foundation. The Colorado River is approaching a crossroads. For the first time in its history, satisfying water demands in one state may require curtailing legally-recognized uses in another. This is not the first instance of water shortages in the region, and conflict among the seven Colorado River states is certainly not new. But the potential shortages on the horizon are larger in scale and magnitude than ever seen before, and the regional insurance policy against this sort of catastrophe, the storage reservoirs of Lake Powell and Mead, are being pushed to their limits. Key water decision-makers from throughout the basin will come together to explore a variety of topics pertaining to the Law of the River: the ability of the system to meet water delivery and hydropower obligations, potential impacts of shortages to water users and the environment, and solutions for future management

    Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection

    Get PDF
    We present experimental data and their theoretical interpretation for the decay rates of temperature fluctuations in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The measurements were made with the mean temperature of the layer corresponding to the critical isochore of sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a wide range of temperature gradients below the onset of Rayleigh-B\'enard convection, and span wave numbers on both sides of the critical value for this onset. The decay rates were determined from experimental shadowgraph images of the fluctuations at several camera exposure times. We present a theoretical expression for an exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is approached, the data reveal the critical slowing-down associated with the bifurcation. Theoretical predictions for the decay rates as a function of the wave number and temperature gradient are presented and compared with the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at the mean temperature located on the critical isochore.Comment: 13 pages, 10 figures, 52 reference

    Tess hunt for young and maturing exoplanets (thyme). II. a 17 myr old transiting hot jupiter in the sco-cen association

    Get PDF
    We present the discovery of a transiting hot Jupiter orbiting HIP 67522 (T eff ∼ 5650 K; M ∗ ∼ 1.2M o˙) in the 10-20 Myr old Sco-Cen OB association. We identified the transits in the TESS data using our custom notch filter planet search pipeline and characterize the system with additional photometry from Spitzer; spectroscopy from SOAR/Goodman, SALT/HRS, LCOGT/NRES, and SMARTS/CHIRON; and speckle imaging from SOAR/HRCam. We model the photometry as a periodic Gaussian process with transits to account for stellar variability and find an orbital period of 6.9596+0.0000150-000016days and radius of10.02-0.53+0.54R⊕. We also identify a single transit of an additional candidate planet with radius 8.01-0.710.75R ⊕ that has an orbital period of ⪆23 days. The validated planet HIP 67522b is currently the youngest transiting hot Jupiter discovered and is an ideal candidate for transmission spectroscopy and radial velocity follow-up studies, while also demonstrating that some young giant planets either form in situ at small orbital radii or else migrate promptly from formation sites farther out in the disk

    A genome-wide association study identifies risk alleles in plasminogen and P4HA2 associated with giant cell arteritis

    Get PDF
    Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analysed in 2,134 cases and 9,125 unaffected controls from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, P = 1.94E-54, per-allele OR = 1.79; and rs9275592, P = 1.14E-40, OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, P = 1.23E-10, OR = 1.28; and rs128738, P = 4.60E-09, OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
    corecore