566 research outputs found

    Analytical solution of a generalized Penna model

    Full text link
    In 1995 T.J.Penna introduced a simple model of biological aging. A modified Penna model has been demonstrated to exhibit behaviour of real-life systems including catastrophic senescence in salmon and a mortality plateau at advanced ages. We present a general steady-state, analytic solution to the Penna model, able to deal with arbitrary birth and survivability functions. This solution is employed to solve standard variant Penna models studied by simulation. Different Verhulst factors regulating both the birth rate and external death rate are considered.Comment: 6 figure

    The Ricci flow on noncommutative two-tori

    Get PDF
    In this paper we construct a version of Ricci flow for noncommutative 2-tori, based on a spectral formulation in terms of the eigenvalues and eigenfunction of the Laplacian and recent results on the Gauss-Bonnet theorem for noncommutative tori.Comment: 18 pages, LaTe

    Maximum solutions of normalized Ricci flows on 4-manifolds

    Full text link
    We consider maximum solution g(t)g(t), t∈[0,+∞)t\in [0, +\infty), to the normalized Ricci flow. Among other things, we prove that, if (M,ω)(M, \omega) is a smooth compact symplectic 4-manifold such that b2+(M)>1b_2^+(M)>1 and let g(t),t∈[0,∞)g(t),t\in[0,\infty), be a solution to (1.3) on MM whose Ricci curvature satisfies that ∣Ric(g(t))âˆŁâ‰€3|\text{Ric}(g(t))|\leq 3 and additionally χ(M)=3τ(M)>0\chi(M)=3 \tau (M)>0, then there exists an m∈Nm\in \mathbb{N}, and a sequence of points {xj,k∈M}\{x_{j,k}\in M\}, j=1,...,mj=1, ..., m, satisfying that, by passing to a subsequence, (M,g(tk+t),x1,k,...,xm,k)⟶dGH(∐j=1mNj,g∞,x1,∞,...,,xm,∞),(M, g(t_{k}+t), x_{1,k},..., x_{m,k}) \stackrel{d_{GH}}\longrightarrow (\coprod_{j=1}^m N_j, g_{\infty}, x_{1,\infty}, ...,, x_{m,\infty}), t∈[0,∞)t\in [0, \infty), in the mm-pointed Gromov-Hausdorff sense for any sequence tk⟶∞t_{k}\longrightarrow \infty, where (Nj,g∞)(N_{j}, g_{\infty}), j=1,...,mj=1,..., m, are complete complex hyperbolic orbifolds of complex dimension 2 with at most finitely many isolated orbifold points. Moreover, the convergence is C∞C^{\infty} in the non-singular part of ∐1mNj\coprod_1^m N_{j} and Volg0(M)=∑j=1mVolg∞(Nj)\text{Vol}_{g_{0}}(M)=\sum_{j=1}^{m}\text{Vol}_{g_{\infty}}(N_{j}), where χ(M)\chi(M) (resp. τ(M)\tau(M)) is the Euler characteristic (resp. signature) of MM.Comment: 23 page

    Competition of charge, orbital, and ferromagnetic correlations in layered manganites

    Full text link
    The competition of charge, orbital, and ferromagnetic interactions in layered manganites is investigated by magneto-Raman scattering spectroscopy. We find that the colossal magnetoresistance effect in the layered compounds results from the interplay of the orbital and ferromagnetic double-exchange correlations. Inelastic scattering by charge-order fluctuations dominates the quasiparticle dynamics in the ferromagnetic-metal state. The scattering is suppressed at low frequencies, consistent with the opening of a charge-density wave pseudogap.Comment: 10 pages, 4 figure

    Nearby quasar remnants and ultra-high energy cosmic rays

    Get PDF
    As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies >40> 40 EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical Review

    PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection

    Full text link
    We provide ingredients and recipes for computing signals of TeV-scale Dark Matter annihilations and decays in the Galaxy and beyond. For each DM channel, we present the energy spectra of electrons and positrons, antiprotons, antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at production, computed by high-statistics simulations. We estimate the Monte Carlo uncertainty by comparing the results yielded by the Pythia and Herwig event generators. We then provide the propagation functions for charged particles in the Galaxy, for several DM distribution profiles and sets of propagation parameters. Propagation of electrons and positrons is performed with an improved semi-analytic method that takes into account position-dependent energy losses in the Milky Way. Using such propagation functions, we compute the energy spectra of electrons and positrons, antiprotons and antideuterons at the location of the Earth. We then present the gamma ray fluxes, both from prompt emission and from Inverse Compton scattering in the galactic halo. Finally, we provide the spectra of extragalactic gamma rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125 higgs boson, computation and discussion of extragalactic spectra corrected, some other typos fixed; all these corrections and updates are reflected on the numerical ingredients available at http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.

    Diatom ecological response to deposition of the 833-850 CE White River Ash (east lobe) ashfall in a small subarctic Canadian lake

    Get PDF
    A <5 mm thick volcanic ashfall layer associated with the White River Ash (east lobe [WRAe]) originating from the eruption of Mount Churchill, Alaska (833-850 CE; 1,117-1,100 cal BP) was observed in two freeze cores obtained from Pocket Lake (62.5090◩N, −114.3719◩W), a small subarctic lake located within the city limits of Yellowknife, Northwest Territories, Canada. Here we analyze changes in diatom assemblages to assess impact of tephra deposition on the aquatic biota of a subarctic lake. In a well-dated core constrained by 8 radiocarbon dates, diatom counts were carried out at 1-mm intervals through an interval spanning 1 cm above and below the tephra layer with each 1 mm sub-sample represented about 2 years of dep

    Search for lepton-flavor violation at HERA

    Get PDF
    A search for lepton-flavor-violating interactions ep→ΌXe p \to \mu X and ep→τXe p\to \tau X has been performed with the ZEUS detector using the entire HERA I data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data were taken at center-of-mass energies, s\sqrt{s}, of 300 and 318 GeV. No evidence of lepton-flavor violation was found, and constraints were derived on leptoquarks (LQs) that could mediate such interactions. For LQ masses below s\sqrt{s}, limits were set on λeq1ÎČℓq\lambda_{eq_1} \sqrt{\beta_{\ell q}}, where λeq1\lambda_{eq_1} is the coupling of the LQ to an electron and a first-generation quark q1q_1, and ÎČℓq\beta_{\ell q} is the branching ratio of the LQ to the final-state lepton ℓ\ell (ÎŒ\mu or τ\tau) and a quark qq. For LQ masses much larger than s\sqrt{s}, limits were set on the four-fermion interaction term λeqαλℓqÎČ/MLQ2\lambda_{e q_\alpha} \lambda_{\ell q_\beta} / M_{\mathrm{LQ}}^2 for LQs that couple to an electron and a quark qαq_\alpha and to a lepton ℓ\ell and a quark qÎČq_\beta, where α\alpha and ÎČ\beta are quark generation indices. Some of the limits are also applicable to lepton-flavor-violating processes mediated by squarks in RR-Parity-violating supersymmetric models. In some cases, especially when a higher-generation quark is involved and for the process ep→τXe p\to \tau X , the ZEUS limits are the most stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig. 6) adde

    Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2. The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s) = 318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of differential dijet and trijet cross sections are presented as functions of jet transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections, is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.) {+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure

    Photoproduction of D∗±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D∗±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb−1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {Ξn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The D∗D^* meson is centrally produced with pseudorapidity {∣η∣1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive D∗D^* production is 8.85±0.93(stat.)−0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table
    • 

    corecore