245 research outputs found
Measurement of the fraction of t-tbar production via gluon-gluon fusion in p-pbar collisions at sqrt(s)=1.96 TeV
We present a measurement of the ratio of t-tbar production cross section via
gluon-gluon fusion to the total t-tbar production cross section in p-pbar
collisions at sqrt{s}=1.96 TeV at the Tevatron. Using a data sample with an
integrated luminosity of 955/pb recorded by the CDF II detector at Fermilab, we
select events based on the t-tbar decay to lepton+jets. Using an artificial
neural network technique we discriminate between t-tbar events produced via
q-qbar annihilation and gluon-gluon fusion, and find
Cf=(gg->ttbar)/(pp->ttbar)<0.33 at the 68% confidence level. This result is
combined with a previous measurement to obtain the most precise measurement of
this quantity, Cf=0.07+0.15-0.07.Comment: submitted to Phys. Rev.
Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons
We report a measurement of resonance parameters of the orbitally excited
(L=1) narrow B^0 mesons in decays to B^{(*)+}\pi^- using 1.7/fb of data
collected by the CDF II detector at the Fermilab Tevatron. The mass and width
of the B^{*0}_2 state are measured to be m(B^{*0}_2) =
5740.2^{+1.7}_{-1.8}(stat.) ^{+0.9}_{-0.8}(syst.) MeV/c^2 and \Gamma(B^{*0}_2)
= 22.7^{+3.8}_{-3.2}(stat.) ^{+3.2}_{-10.2}(syst.) MeV/c^2. The mass difference
between the B^{*0}_2 and B^0_1 states is measured to be
14.9^{+2.2}_{-2.5}(stat.) ^{+1.2}_{-1.4}(syst.) MeV/c^2, resulting in a B^0_1
mass of 5725.3^{+1.6}_{-2.2}(stat.) ^{+1.4}_{-1.5}(syst.) MeV/c^2. This is
currently the most precise measurement of the masses of these states and the
first measurement of the B^{*0}_2 width.Comment: 7 pages, 1 figure, 1 table. Submitted to Phys.Rev.Let
Search for Long-Lived Massive Charged Particles in 1.96 TeV \bar{p}p} Collisions
16 pages, 2 figures; Revision to fix PDF errors on some displays/printersWe performed a signature-based search for long-lived charged massive particles (CHAMPs) produced in 1.0 of collisions at TeV, collected with the CDF II detector using a high transverse-momentum () muon trigger. The search used time-of-flight to isolate slowly moving, high- particles. One event passed our selection cuts with an expected background of events. We set an upper bound on the production cross section, and, interpreting this result within the context of a stable scalar top quark model, set a lower limit on the particle mass of 249 GeV/ at 95% C.L.We performed a signature-based search for long-lived charged massive particles produced in 1.0 fb-1 of pp̅ collisions at √s=1.96 TeV, collected with the CDF II detector using a high transverse-momentum (pT) muon trigger. The search used time of flight to isolate slowly moving, high-pT particles. One event passed our selection cuts with an expected background of 1.9±0.2 events. We set an upper bound on the production cross section and, interpreting this result within the context of a stable scalar top-quark model, set a lower limit on the particle mass of 249 GeV/c2 at 95% C.L.Peer reviewe
Search for WW and WZ production in lepton plus jets final state at CDF
submitted to Phys. Rev. D (RC)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in √s=1.96 TeV pp̅ collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of σWW×BR(W→ℓνℓ,W→jets)+σWZ×BR(W→ℓνℓ,Z→jets)<2.88 pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09±0.12 pb.Peer reviewe
Search for a Higgs Boson Decaying to Two W Bosons at CDF
We present a search for a Higgs boson decaying to two W bosons in ppbar collisions at sqrt(s)=1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb-1 collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c^2, and determine upper limits on the production cross section. For the mass of 160 GeV/c^2, where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section
Top Quark Mass Measurement in the Lepton plus Jets Channel Using a Modified Matrix Element Method
46 pages, 16 figures. Edited in response to referee comments and resubmitted to Phys. Rev. DWe report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.We report a measurement of the top quark mass, mt, obtained from pp̅ collisions at √s=1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of mt and a parameter JES (jet energy scale) that determines in situ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find mt=172.7±1.8(stat+JES)±1.2(syst) GeV/c2.Peer reviewe
A Search for the Higgs Boson Produced in Association with Using the Matrix Element Method at CDF II
Submitted to Phys. Rev. DWe present a search for associated production of the standard model (SM) Higgs boson and a boson where the boson decays to two leptons and the Higgs decays to a pair of quarks in collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb we see no evidence of a Higgs boson with a mass between 100 GeV and 150 GeV. We set 95% confidence level (C.L.) upper limits on the cross-section for production as a function of the Higgs boson mass ; the limit is 8.2 times the SM prediction at GeV.We present a search for associated production of the standard model Higgs boson and a Z boson where the Z boson decays to two leptons and the Higgs decays to a pair of b quarks in pp̅ collisions at the Fermilab Tevatron. We use event probabilities based on standard model matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb-1 we see no evidence of a Higgs boson with a mass between 100 GeV/c2 and 150 GeV/c2. We set 95% confidence level upper limits on the cross section for ZH production as a function of the Higgs boson mass mH; the limit is 8.2 times the standard model prediction at mH=115 GeV/c2.Peer reviewe
Measurement of Particle Production and Inclusive Differential Cross Sections in pbar{p} Collisions at sqrt{s}=1.96 TeV
21 pages, 10 figuresWe report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.We report a set of measurements of particle production in inelastic pp̅ collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a pythia prediction at the hadron level is performed. The inclusive charged-particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.Peer reviewe
Searching the Inclusive Lepton + Photon + Missing ET + b-quark Signature for Radiative Top Quark Decay and Non-Standard-Model Processes
8 pages, 6 figuresIn a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton, a photon, significant transverse momentum imbalance (MET), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at 1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 lepton+photon+MET+b events versus an expectation of 31.0+4.1/-3.5 events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, ttbar+photon. In the data we observe 16 ttbar+photon candidate events versus an expectation from SM sources of 11.2+2.3/-2.1. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the ttg cross section to be 0.15 +- 0.08 pb.We compare the inclusive production of events containing a lepton (ℓ), a photon (γ), significant transverse momentum imbalance (E̸T), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at √s=1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector. We find 28 ℓγbE̸T events versus an expectation of 31.0-3.5+4.1 events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, tt̅ +γ. In the data we observe 16 tt̅ γ candidate events versus an expectation from SM sources of 11.2-2.1+2.3. Assuming the difference between the observed number and the predicted non-top-quark total of 6.8-2.0+2.2 is due to SM top-quark production, we estimate the tt̅ γ cross section to be 0.15±0.08 pb.Peer reviewe
Measurement of the b-Hadron Production Cross Section Using Decays to mu^- D^0 X Final States in ppbar Collisions at sqrt s = 1.96 TeV
We report a measurement of the production cross section for b hadrons in p-pbar collisions at sqrt{s}=1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb^-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, H_b, partially reconstructed in the semileptonic decay mode H_b -> mu^- D^0 X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum p_T > 9 GeV/c and rapidity |y|We report a measurement of the production cross section for b hadrons in pp̅ collisions at √s=1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, Hb, partially reconstructed in the semileptonic decay mode Hb→μ-D0X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum pT>9 GeV/c and rapidity |y|<0.6 is σ=1.30 μb±0.05 μb(stat)±0.14 μb(syst)±0.07 μb(B), where the uncertainties are statistical, systematic, and from branching fractions, respectively. The differential cross sections dσ/dpT are found to be in good agreement with recent measurements of the Hb cross section and well described by fixed-order next-to-leading logarithm predictions.Peer reviewe
- …