2,632 research outputs found

    Demonstration of an electrostatic-shielded cantilever

    Full text link
    The fabrication and performances of cantilevered probes with reduced parasitic capacitance starting from a commercial Si3N4 cantilever chip is presented. Nanomachining and metal deposition induced by focused ion beam techniques were employed in order to modify the original insulating pyramidal tip and insert a conducting metallic tip. Two parallel metallic electrodes deposited on the original cantilever arms are employed for tip biasing and as ground plane in order to minimize the electrostatic force due to the capacitive interaction between cantilever and sample surface. Excitation spectra and force-to-distance characterization are shown with different electrode configurations. Applications of this scheme in electrostatic force microscopy, Kelvin probe microscopy and local anodic oxidation is discussed.Comment: 4 pages and 3 figures. Submitted to Applied Physics Letter

    An integrated approach project for the revaluation of a traditional sourdough bread production chain

    Get PDF
    The influence of organic and conventional farming systems on the performance of a panel of old and modern Italian bread wheat varieties has been evaluated, with the aim to individuate an agronomic protocol suitable for the production of a sourdough bread traditionally prepared in a hill zone of Emilia-Romagna. The agronomic and technological characterisation of the wheat samples obtained in organic and conventional farming conditions has been done and the sensorial qualities of the sourdough bread obtained have been evaluated

    Coulomb-Blockade directional coupler

    Get PDF
    A tunable directional coupler based on Coulomb Blockade effect is presented. Two electron waveguides are coupled by a quantum dot to an injector waveguide. Electron confinement is obtained by surface Schottky gates on single GaAs/AlGaAs heterojunction. Magneto-electrical measurements down to 350 mK are presented and large transconductance oscillations are reported on both outputs up to 4.2 K. Experimental results are interpreted in terms of Coulomb Blockade effect and the relevance of the present design strategy for the implementation of an electronic multiplexer is underlined.Comment: 4 pages, 4 figures, to be published in Applied Physics Letter

    Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    Get PDF
    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. There is a reflection law for these electrons that relates the incident and the reflection angles and is independent of any parameters.Comment: 12 pp, 3 fig

    Low field magnetotransport in strained Si/SiGe cavities

    Full text link
    Low field magnetotransport revealing signatures of ballistic transport effects in strained Si/SiGe cavities is investigated. We fabricated strained Si/SiGe cavities by confining a high mobility Si/SiGe 2DEG in a bended nanowire geometry defined by electron-beam lithography and reactive ion etching. The main features observed in the low temperature magnetoresistance curves are the presence of a zero-field magnetoresistance peak and of an oscillatory structure at low fields. By adopting a simple geometrical model we explain the oscillatory structure in terms of electron magnetic focusing. A detailed examination of the zero-field peak lineshape clearly shows deviations from the predictions of ballistic weak localization theory.Comment: Submitted to Physical Review B, 25 pages, 7 figure

    Emission of correlated photon pairs from superluminal perturbations in dispersive media

    Full text link
    We develop a perturbative theory that describes a superluminal refractive perturbation propagating in a dispersive medium and the subsequent excitation of the quantum vacuum zero-point fluctuations. We find a process similar to the anomalous Doppler effect: photons are emitted in correlated pairs and mainly within a Cerenkov-like cone, one on the forward and the other in backward directions. The number of photon pairs emitted from the perturbation increases strongly with the degree of superluminality and under realizable experimental conditions, it can reach up to ~0.01 photons per pulse. Moreover, it is in principle possible to engineer the host medium so as to modify the effective group refractive index. In the presence of "fast light" media, e.g. a with group index smaller than unity, a further ~10x enhancement may be achieved and the photon emission spectrum is characterized by two sharp peaks that, in future experiments would clearly identify the correlated emission of photon pairs.Comment: 9 pages, 7 figure

    Splenomegaly impacts prognosis in essential thrombocythemia and polycythemia vera: A single center study

    Get PDF
    Splenomegaly is one of the major clinical manifestations of primary myelofibrosis and is common also in other chronic Philadelphia-negative myeloproliferative neoplasms, causing symptoms and signs and affecting quality of life of patients diagnosed with these diseases. We aimed to study the impact that such alteration has on thrombotic risk and on the survival of patients with essential thrombocythemia and patients with Polycythemia Vera (PV). We studied the relationship between splenomegaly (and its grade), thrombosis and survival in 238 patients with et and 165 patients with PV followed at our center between January 1997 and May 2019

    Delbr\"uck scattering in combined Coulomb and laser fields

    Full text link
    We study Delbr\"uck scattering in a Coulomb field in the presence of a laser field. The amplitudes are calculated in the Born approximation with respect to the Coulomb field and exactly in the parameters of the laser field having arbitrary strength, spectral content and polarization. The case of high energy initial photon energy is investigated in detail for a monochromatic circularly polarized laser field. It is shown that the angular distribution of the process substantially differs from that for Delbr\"uck scattering in a pure Coulomb field. The value of the cross section under discussion may exceed the latter at realistic laser parameters that essentially simplify the possibility of the experimental observation of the phenomenon. The effect of high order terms in the quantum intensity parameter χ\chi of the laser field is found to be very important already at relatively small χ\chi.Comment: 21 pages, 4 figure

    Polarization of the electron and positron produced in combined Coulomb and strong laser fields

    Full text link
    The process of e+ee^+e^- production in the superposition of a Coulomb and a strong laser field is considered. The pair production rate integrated over the momentum and summed over the spin projections of one of the particles is derived exactly in the parameters of the laser field and in the Born approximation with respect to the Coulomb field. The case of a monochromatic circularly polarized laser field is considered in detail. A very compact analytical expression of the pair production rate and its dependence on the polarization of one of the created particles is obtained in the quasiclassical approximation for the experimentally relevant case of an undercritical laser field. As a result, the polarization of the created electron (positron) is derived.Comment: 16 pages, no figure
    corecore