Low field magnetotransport revealing signatures of ballistic transport
effects in strained Si/SiGe cavities is investigated. We fabricated strained
Si/SiGe cavities by confining a high mobility Si/SiGe 2DEG in a bended nanowire
geometry defined by electron-beam lithography and reactive ion etching. The
main features observed in the low temperature magnetoresistance curves are the
presence of a zero-field magnetoresistance peak and of an oscillatory structure
at low fields. By adopting a simple geometrical model we explain the
oscillatory structure in terms of electron magnetic focusing. A detailed
examination of the zero-field peak lineshape clearly shows deviations from the
predictions of ballistic weak localization theory.Comment: Submitted to Physical Review B, 25 pages, 7 figure