The fabrication and performances of cantilevered probes with reduced
parasitic capacitance starting from a commercial Si3N4 cantilever chip is
presented. Nanomachining and metal deposition induced by focused ion beam
techniques were employed in order to modify the original insulating pyramidal
tip and insert a conducting metallic tip. Two parallel metallic electrodes
deposited on the original cantilever arms are employed for tip biasing and as
ground plane in order to minimize the electrostatic force due to the capacitive
interaction between cantilever and sample surface. Excitation spectra and
force-to-distance characterization are shown with different electrode
configurations. Applications of this scheme in electrostatic force microscopy,
Kelvin probe microscopy and local anodic oxidation is discussed.Comment: 4 pages and 3 figures. Submitted to Applied Physics Letter