100 research outputs found

    Nonlinear excitations in arrays of Bose-Einstein condensates

    Full text link
    The dynamics of localized excitations in array of Bose-Einstein condensates is investigated in the framework of the nonlinear lattice theory. The existence of temporarily stable ground states displaying an atomic population distributions localized on very few lattice sites (intrinsic localized modes), as well as, of atomic population distributions involving many lattice sites (envelope solitons), is studied both numerically and analytically. The origin and properties of these modes are shown to be inherently connected with the interplay between macroscopic quantum tunnelling and nonlinearity induced self-trapping of atoms in coupled BECs. The phenomenon of Bloch oscillations of these excitations is studied both for zero and non zero backgrounds. We find that in a definite range of parameters, homogeneous distributions can become modulationally unstable. We also show that bright solitons and excitations of shock wave type can exist in BEC arrays even in the case of positive scattering length. Finally, we argue that BEC array with negative scattering length in presence of linear potentials can display collapse.Comment: Submitted to Phys. Rev.

    Stream diatom biodiversity in islands and continents—A global perspective on effects of area, isolation and environment

    Get PDF
    Aim The species-area relationship (SAR) is one of the most distinctive biogeographic patterns, but global comparisons of the SARs between island and mainland are lacking for microbial taxa. Here, we explore whether the form of the SAR and the drivers of species richness, including area, environmental heterogeneity, climate and physico-chemistry, differ between islands and similarly sized areas on mainland, referred to as continental area equivalents (CAEs). Location Global. Taxon Stream benthic diatoms. Methods We generated CAEs on six continental datasets and examined the SARs of CAEs and islands (ISAR). Then, we compared CAEs and islands in terms of total richness and richness of different ecological guilds. We tested the factors contributing to richness in islands and CAEs with regressions. We used structural equation models to determine the effects of area versus environmental heterogeneity, climate and local conditions on species richness. Results We found a non-significant ISAR, but a significant positive SAR in CAEs. Richness in islands was related to productivity. Richness in CAEs was mainly dependent on area and climate, but not directly on environmental heterogeneity. Species richness within guilds exhibited inconsistent relationships with island isolation and area. Main conclusions Ecological and evolutionary processes shaping diatom island biogeography do not depend on area at the worldwide scale probably due to the presence of distinct species pool across islands. Conversely, area was an important driver of diatom richness in continents, and this effect could be attributed to dispersal. Continents had greater richness than islands, but this was a consequence of differences in environmental conditions such as specific island climatic conditions. We stress the need for more island data on benthic diatoms, particularly from archipelagos, to better understand the biogeography of this most speciose group of algae

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks: The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series

    Paramedic assessment of pain in the cognitively impaired adult patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paramedics are often a first point of contact for people experiencing pain in the community. Wherever possible the patient's self report of pain should be sought to guide the assessment and management of this complaint. Communication difficulty or disability such as cognitive impairment associated with dementia may limit the patient's ability to report their pain experience, and this has the potential to affect the quality of care. The primary objective of this study was to systematically locate evidence relating to the use of pain assessment tools that have been validated for use with cognitively impaired adults and to identify those that have been recommended for use by paramedics.</p> <p>Methods</p> <p>A systematic search of health databases for evidence relating to the use of pain assessment tools that have been validated for use with cognitively impaired adults was undertaken using specific search criteria. An extended search included position statements and clinical practice guidelines developed by health agencies to identify evidence-based recommendations regarding pain assessment in older adults.</p> <p>Results</p> <p>Two systematic reviews met study inclusion criteria. Weaknesses in tools evaluated by these studies limited their application in assessing pain in the population of interest. Only one tool was designed to assess pain in acute care settings. No tools were located that are designed for paramedic use.</p> <p>Conclusion</p> <p>The reviews of pain assessment tools found that the majority were developed to assess chronic pain in aged care, hospital or hospice settings. An analysis of the characteristics of these pain assessment tools identified attributes that may limit their use in paramedic practice. One tool - the Abbey Pain Scale - may have application in paramedic assessment of pain, but clinical evaluation is required to validate this tool in the paramedic practice setting. Further research is recommended to evaluate the Abbey Pain Scale and to evaluate the effectiveness of paramedic pain management practice in older adults to ensure that the care of all patients is unaffected by age or disability.</p

    Clinical reporting following the quantification of cerebrospinal fluid biomarkers in Alzheimer's disease: An international overview

    Get PDF
    Introduction: The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests. Methods: We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients. Results: The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis. Discussion: This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD

    Genome-wide analyses reveal a potential role for the <em>MAPT</em>, <em>MOBP</em>, and <em>APOE </em>loci in sporadic frontotemporal dementia

    Get PDF
    \ua9 2024 The Author(s)Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 7 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 7 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 7 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities

    No full text
    International audienceThis work numerically investigates the dynamics of a Chua’s circuit model experiencing a truncated sinusoidal force and driven by an external perturbed excitation. We mainly study the impact of the system’s nonlinearity on the occurrence of Vibrational Resonance (VR) and Ghost-Vibrational Resonance (GVR) phenomena. When a truncated sinusoidal nonlinearity is used, the system requires relatively smaller perturbation amplitude to attain its maximum response better than the one achieved with a sawtooth nonlinearity which requires a larger perturbation amplitude. Therefore, the system with a truncated sinusoidal nonlinearity outperforms the one with a sawtooth nonlinearity. Exciting the system with two low frequency inputs and an additive high frequency perturbation, we identify different ranges of the perturbation amplitude in which the occurrence of VR and GVR phenomena are maximized. We show that depending on the perturbation amplitude, the system can synchronize its response with the ghost frequency or one of the two input low frequencies
    corecore