14 research outputs found
Identification of sixteen novel candidate genes for late onset Parkinson’s disease
Background
Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD.
Methods
The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls).
Results
Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD.
Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD.
Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment.
Conclusions
Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Finding genetically-supported drug targets for Parkinson’s disease using Mendelian randomization of the druggable genome
Parkinson’s disease is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation. We use Mendelian randomization to investigate over 3,000 genes that encode druggable proteins and predict their efficacy as drug targets for Parkinson’s disease. We use expression and protein quantitative trait loci to mimic exposure to medications, and we examine the causal effect on Parkinson’s disease risk (in two large cohorts), age at onset and progression. We propose 23 drug-targeting mechanisms for Parkinson’s disease, including four possible drug repurposing opportunities and two drugs which may increase Parkinson’s disease risk. Of these, we put forward six drug targets with the strongest Mendelian randomization evidence. There is remarkably little overlap between our drug targets to reduce Parkinson’s disease risk versus progression, suggesting different molecular mechanisms. Drugs with genetic support are considerably more likely to succeed in clinical trials, and we provide compelling genetic evidence and an analysis pipeline to prioritise Parkinson’s disease drug development
Patients with Crohn's disease have longer post-operative in-hospital stay than patients with colon cancer but no difference in complications' rate
BACKGROUNDRight hemicolectomy or ileocecal resection are used to treat benign conditions like Crohn's disease (CD) and malignant ones like colon cancer (CC).AIMTo investigate differences in pre- and peri-operative factors and their impact on post-operative outcome in patients with CC and CD.METHODSThis is a sub-group analysis of the European Society of Coloproctology's prospective, multi-centre snapshot audit. Adult patients with CC and CD undergoing right hemicolectomy or ileocecal resection were included. Primary outcome measure was 30-d post-operative complications. Secondary outcome measures were post-operative length of stay (LOS) at and readmission.RESULTSThree hundred and seventy-five patients with CD and 2,515 patients with CC were included. Patients with CD were younger (median = 37 years for CD and 71 years for CC (P < 0.01), had lower American Society of Anesthesiology score (ASA) grade (P < 0.01) and less comorbidity (P < 0.01), but were more likely to be current smokers (P < 0.01). Patients with CD were more frequently operated on by colorectal surgeons (P < 0.01) and frequently underwent ileocecal resection (P < 0.01) with higher rate of de-functioning/primary stoma construction (P < 0.01). Thirty-day post-operative mortality occurred exclusively in the CC group (66/2515, 2.3%). In multivariate analyses, the risk of post-operative complications was similar in the two groups (OR 0.80, 95%CI: 0.54-1.17; P = 0.25). Patients with CD had a significantly longer LOS (Geometric mean 0.87, 95%CI: 0.79-0.95; P < 0.01). There was no difference in re-admission rates. The audit did not collect data on post-operative enhanced recovery protocols that are implemented in the different participating centers.CONCLUSIONPatients with CD were younger, with lower ASA grade, less comorbidity, operated on by experienced surgeons and underwent less radical resection but had a longer LOS than patients with CC although complication's rate was not different between the two groups
Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome
Parkinson's disease is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation. We use Mendelian randomization to investigate over 3,000 genes that encode druggable proteins and predict their efficacy as drug targets for Parkinson's disease. We use expression and protein quantitative trait loci to mimic exposure to medications, and we examine the causal effect on Parkinson's disease risk (in two large cohorts), age at onset and progression. We propose 23 drug-targeting mechanisms for Parkinson's disease, including four possible drug repurposing opportunities and two drugs which may increase Parkinson's disease risk. Of these, we put forward six drug targets with the strongest Mendelian randomization evidence. There is remarkably little overlap between our drug targets to reduce Parkinson's disease risk versus progression, suggesting different molecular mechanisms. Drugs with genetic support are considerably more likely to succeed in clinical trials, and we provide compelling genetic evidence and an analysis pipeline to prioritise Parkinson's disease drug development
Investigation of Autosomal Genetic Sex Differences in Parkinson's disease.
OBJECTIVE: Parkinson's disease (PD) is a complex neurodegenerative disorder. Males are on average ~ 1.5 times more likely to develop PD compared to females with European ancestry. Over the years genome-wide association studies (GWAS) have identified numerous genetic risk factors for PD, however it is unclear whether genetics contribute to disease etiology in a sex-specific manner. METHODS: In an effort to study sex-specific genetic factors associated with PD, we explored two large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases. RESULTS: In total 19 genome-wide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWASes was identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (~20%). INTERPRETATION: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus females. This article is protected by copyright. All rights reserved
Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset
Altres ajuts: This work was supported in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project ZO1 AG000949.Mitochondrial dysfunction has been implicated in the etiology of monogenic Parkinson's disease (PD). Yet the role that mitochondrial processes play in the most common form of the disease; sporadic PD, is yet to be fully established. Here, we comprehensively assessed the role of mitochondrial function-associated genes in sporadic PD by leveraging improvements in the scale and analysis of PD GWAS data with recent advances in our understanding of the genetics of mitochondrial disease. We calculated a mitochondrial-specific polygenic risk score (PRS) and showed that cumulative small effect variants within both our primary and secondary gene lists are significantly associated with increased PD risk. We further reported that the PRS of the secondary mitochondrial gene list was significantly associated with later age at onset. Finally, to identify possible functional genomic associations we implemented Mendelian randomization, which showed that 14 of these mitochondrial function-associated genes showed functional consequence associated with PD risk. Further analysis suggested that the 14 identified genes are not only involved in mitophagy, but implicate new mitochondrial processes. Our data suggests that therapeutics targeting mitochondrial bioenergetics and proteostasis pathways distinct from mitophagy could be beneficial to treating the early stage of PD
Moving beyond neurons : the role of cell type-specific gene regulation in Parkinson's disease heritability
Parkinson's disease (PD), with its characteristic loss of nigrostriatal dopaminergic neurons and deposition of α-synuclein in neurons, is often considered a neuronal disorder. However, in recent years substantial evidence has emerged to implicate glial cell types, such as astrocytes and microglia. In this study, we used stratified LD score regression and expression-weighted cell-type enrichment together with several brain-related and cell-type-specific genomic annotations to connect human genomic PD findings to specific brain cell types. We found that PD heritability attributable to common variation does not enrich in global and regional brain annotations or brain-related cell-type-specific annotations. Likewise, we found no enrichment of PD susceptibility genes in brain-related cell types. In contrast, we demonstrated a significant enrichment of PD heritability in a curated lysosomal gene set highly expressed in astrocytic, microglial, and oligodendrocyte subtypes, and in LoF-intolerant genes, which were found highly expressed in almost all tested cellular subtypes. Our results suggest that PD risk loci do not lie in specific cell types or individual brain regions, but rather in global cellular processes detectable across several cell types
Predictors for anastomotic leak, postoperative complications, and mortality after right colectomy for cancer: Results from an international snapshot audit
Background: A right hemicolectomy is among the most commonly performed operations for colon cancer, but modern high-quality, multination data addressing the morbidity and mortality rates are lacking. Objective: This study reports the morbidity and mortality rates for right-sided colon cancer and identifies predictors for unfavorable short-term outcome after right hemicolectomy. Design: This was a snapshot observational prospective study. Setting: The study was conducted as a multicenter international study. Patients: The 2015 European Society of Coloproctology snapshot study was a prospective multicenter international series that included all patients undergoing elective or emergency right hemicolectomy or ileocecal resection over a 2-month period in early 2015. This is a subanalysis of the colon cancer cohort of patients. Main Outcome Measures: Predictors for anastomotic leak and 30-day postoperative morbidity and mortality were assessed using multivariable mixed-effect logistic regression models after variables selection with the Lasso method. Results: Of the 2515 included patients, an anastomosis was performed in 97.2% (n = 2444), handsewn in 38.5% (n = 940) and stapled in 61.5% (n = 1504) cases. The overall anastomotic leak rate was 7.4% (180/2444), 30-day morbidity was 38.0% (n = 956), and mortality was 2.6% (n = 66). Patients with anastomotic leak had a significantly increased mortality rate (10.6% vs 1.6% no-leak patients; p 65 0.001). At multivariable analysis the following variables were associated with anastomotic leak: longer duration of surgery (OR = 1.007 per min; p = 0.0037), open approach (OR = 1.9; p = 0.0037), and stapled anastomosis (OR = 1.5; p = 0.041). Limitations: This is an observational study, and therefore selection bias could be present. For this reason, a multivariable logistic regression model was performed, trying to correct possible confounding factors. Conclusions: Anastomotic leak after oncologic right hemicolectomy is a frequent complication, and it is associated with increased mortality. The key contributing surgical factors for anastomotic leak were anastomotic technique, surgical approach, and duration of surgery