245 research outputs found

    Climate action for health and wellbeing in cities: a protocol for the systematic development of a database of peer-reviewed studies using machine learning methods [version 1; peer review: awaiting peer review]

    Get PDF
    Home Browse Climate action for health and wellbeing in cities: a protocol for... ALL METRICS 99 VIEWS 11 DOWNLOADS Get PDF Get XML Cite Export Track Email Share ▬ STUDY PROTOCOL Climate action for health and wellbeing in cities: a protocol for the systematic development of a database of peer-reviewed studies using machine learning methods [version 1; peer review: awaiting peer review] Kristine Belesova https://orcid.org/0000-0002-6160-50411, Max Callaghan https://orcid.org/0000-0001-8292-87582, Jan C Minx https://orcid.org/0000-0002-2862-01782, Felix Creutzig2, Catalina Turcu https://orcid.org/0000-0003-2663-25863, Emma Hutchinson1, James Milner1, Melanie Crane https://orcid.org/0000-0002-3058-22114, Andy Haines https://orcid.org/0000-0002-8053-46051, Michael Davies5, Paul Wilkinson1 Author details 1 Department of Public Health, Environments and Society and Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, WC1H 9SH, UK 2 Mercator Research Institute on Global Commons and Climate Change, Berlin, 10829, Germany 3 Bartlett School of Planning, University College London, London, WC1H 0QB, UK 4 Charles Perkins Centre, Sydney School of Public Health, University of Sydney, Sydney, Australia 5 Bartlett School Environment, Energy & Resources, University College London, London, WC1H 0QB, UK Kristine Belesova Roles: Conceptualization, Data Curation, Investigation, Methodology, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing Max Callaghan Roles: Data Curation, Investigation, Methodology, Software, Writing – Review & Editing Jan C Minx Roles: Conceptualization, Investigation, Methodology, Software, Writing – Review & Editing Felix Creutzig Roles: Conceptualization, Investigation, Methodology, Software, Writing – Review & Editing Catalina Turcu Roles: Investigation, Methodology, Writing – Review & Editing Emma Hutchinson Roles: Investigation, Methodology, Writing – Review & Editing James Milner Roles: Methodology, Writing – Review & Editing Melanie Crane Roles: Methodology, Writing – Review & Editing Andy Haines Roles: Conceptualization, Funding Acquisition, Methodology, Supervision, Writing – Review & Editing Michael Davies Roles: Conceptualization, Funding Acquisition, Methodology, Writing – Review & Editing Paul Wilkinson Roles: Conceptualization, Funding Acquisition, Methodology, Supervision, Writing – Review & Editing Abstract Cities produce more than 70% of global greenhouse gas emissions. Action by cities is therefore crucial for climate change mitigation as well as for safeguarding the health and wellbeing of their populations under climate change. Many city governments have made ambitious commitments to climate change mitigation and adaptation and implemented a range of actions to address them. However, a systematic record and synthesis of the findings of evaluations of the effect of such actions on human health and wellbeing is currently lacking. This, in turn, impedes the development of robust knowledge on what constitutes high-impact climate actions of benefit to human health and wellbeing, which can inform future action plans, their implementation and scale-up. The development of a systematic record of studies reporting climate and health actions in cities is made challenging by the broad landscape of relevant literature scattered across many disciplines and sectors, which is challenging to effectively consolidate using traditional literature review methods. This protocol reports an innovative approach for the systematic development of a database of studies of climate change mitigation and adaptation actions implemented in cities, and their benefits (or disbenefits) for human health and wellbeing, derived from peer-reviewed academic literature. Our approach draws on extensive tailored search strategies and machine learning methods for article classification and tagging to generate a database for subsequent systematic reviews addressing questions of importance to urban decision-makers on climate actions in cities for human health and wellbeing

    The technological and economic prospects for CO2 utilization and removal

    Get PDF
    The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways

    A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector

    Get PDF
    To track progress towards keeping global warming well below 2 ºC or even 1.5 °C, as agreed in the Paris Agreement, comprehensive up-to-date and reliable information on anthropogenic emissions and removals of greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with a fast-track extension to 2019. Our dataset is global in coverage and includes CO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) and provides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use, land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95th percentile range) by combining statistical analysis and comparisons of global emissions inventories and top-down atmospheric measurements with an expert judgement informed by the relevant scientific literature. We identify important data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-down atmospheric-based emissions estimates is relatively close for some F-gas species (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 % lower than top-down estimates in recent years. However, emissions from excluded F-gas species such as chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) are cumulatively larger than the sum of the reported species. Using global warming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC), global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq. consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O 2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis of global trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions have increased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that global anthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between 2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was never larger than between 2000–2009 and 2009–2018. Our analysis further reveals that there are no global sectors that show sustained reductions in GHG emissions. There are a number of countries that have reduced GHG emissions over the past decade, but these reductions are comparatively modest and outgrown by much larger emissions growth in some developing countries such as China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investments in independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associated with this article (Minx et al., 2021) can be found at https://doi.org/10.5281/zenodo.5566761

    The co-evolution of technological promises, modelling, policies and climate change targets

    Get PDF
    The nature and framing of climate targets in international politics has changed substantially since their early expressions in the 1980s. Here, we describe their evolution in five phases-from 'climate stabilization' to specific 'temperature outcomes'-co-evolving with wider climate politics and policy, modelling methods and scenarios, and technological promises (from nuclear power to carbon removal). We argue that this co-evolution has enabled policy prevarication, leaving mitigation poorly delivered, yet the technological promises often remain buried in the models used to inform policy. We conclude with a call to recognise and break this pattern to unleash more effective and just climate policy. This Perspective maps the history of climate targets and shows how the international goal of avoiding dangerous climate change has been reinterpreted in the light of new modelling methods and technological promises, ultimately enabling policy prevarication and limiting mitigation

    A vertebrate case study of the quality of assemblies derived from next-generation sequences

    Get PDF
    The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references

    Demand-side approaches for limiting global warming to 1.5 °C

    Get PDF
    The Paris Climate Agreement defined an ambition of limiting global warming to 1.5 °C above preindustrial levels. This has triggered research on stringent emission reduction targets and corresponding mitigation pathways across energy economy and societal systems. Driven by methodological considerations, supply side and carbon dioxide removal options feature prominently in the emerging pathway literature, while much less attention has been given to the role of demand-side approaches. This special issue addresses this gap, and aims to broaden and strengthen the knowledge base in this key research and policy area. This editorial paper synthesizes the special issue’s contributions horizontally through three shared themes we identify: policy interventions, demand-side measures, and methodological approaches. The review of articles is supplemented by insights from other relevant literature. Overall, our paper underlines that stringent demand-side policy portfolios are required to drive the pace and direction of deep decarbonization pathways and keep the 1.5 °C target within reach. It confirms that insufficient attention has been paid to demand-side measures, which are found to be inextricably linked to supply-side decarbonization and able to complement supply-side measures. The paper also shows that there is an abundance of demand-side measures to limit warming to 1.5 °C, but it warns that not all of these options are “seen” or captured by current quantitative tools or progress indicators, and some remain insufficiently represented in the current policy discourse. Based on the set of papers presented in the special issue, we conclude that demand-side mitigation in line with the 1.5 °C goal is possible; however, it remains enormously challenging and dependent on both innovative technologies and policies, and behavioral change. Limiting warming to 1.5 °C requires, more than ever, a plurality of methods and integrated behavioral and technology approaches to better support policymaking and resulting policy interventions

    Negative emissions-Part 1: research landscape and synthesis

    Get PDF
    With the Paris Agreement's ambition of limiting climate change to well below 2 °C, negative emission technologies (NETs) have moved into the limelight of discussions in climate science and policy. Despite several assessments, the current knowledge on NETs is still diffuse and incomplete, but also growing fast. Here, we synthesize a comprehensive body of NETs literature, using scientometric tools and performing an in-depth assessment of the quantitative and qualitative evidence therein. We clarify the role of NETs in climate change mitigation scenarios, their ethical implications, as well as the challenges involved in bringing the various NETs to the market and scaling them up in time. There are six major findings arising from our assessment: first, keeping warming below 1.5 °C requires the large-scale deployment of NETs, but this dependency can still be kept to a minimum for the 2 °C warming limit. Second, accounting for economic and biophysical limits, we identify relevant potentials for all NETs except ocean fertilization. Third, any single NET is unlikely to sustainably achieve the large NETs deployment observed in many 1.5 °C and 2 °C mitigation scenarios. Yet, portfolios of multiple NETs, each deployed at modest scales, could be invaluable for reaching the climate goals. Fourth, a substantial gap exists between the upscaling and rapid diffusion of NETs implied in scenarios and progress in actual innovation and deployment. If NETs are required at the scales currently discussed, the resulting urgency of implementation is currently neither reflected in science nor policy. Fifth, NETs face severe barriers to implementation and are only weakly incentivized so far. Finally, we identify distinct ethical discourses relevant for NETs, but highlight the need to root them firmly in the available evidence in order to render such discussions relevant in practice
    corecore