625 research outputs found

    Reduction and approximation in gyrokinetics

    Full text link
    The gyrokinetics formulation of plasmas in strong magnetic fields aims at the elimination of the angle associated with the Larmor rotation of charged particles around the magnetic field lines. In a perturbative treatment or as a time-averaging procedure, gyrokinetics is in general an approximation to the true dynamics. Here we discuss the conditions under which gyrokinetics is either an approximation or an exact operation in the framework of reduction of dynamical systems with symmetryComment: 15 pages late

    Energetic Consistency and Momentum Conservation in the Gyrokinetic Description of Tokamak Plasmas

    Full text link
    Gyrokinetic field theory is addressed in the context of a general Hamiltonian. The background magnetic geometry is static and axisymmetric, and all dependence of the Lagrangian upon dynamical variables is in the Hamiltonian or in free field terms. Equations for the fields are given by functional derivatives. The symmetry through the Hamiltonian with time and toroidal angle invariance of the geometry lead to energy and toroidal momentum conservation. In various levels of ordering against fluctuation amplitude, energetic consistency is exact. The role of this in underpinning of conservation laws is emphasised. Local transport equations for the vorticity, toroidal momentum, and energy are derived. In particular, the momentum equation is shown for any form of Hamiltonian to be well behaved and to relax to its magnetohydrodynamic (MHD) form when long wavelength approximations are taken in the Hamiltonian. Several currently used forms, those which form the basis of most global simulations, are shown to be well defined within the gyrokinetic field theory and energetic consistency.Comment: RevTeX 4, 47 pages, no figures, revised version updated following referee comments (discussion more strictly correct/consistent, 4 references added, results unchanged as they depend on consistency of the theory), resubmitted to Physics of Plasma

    High-m Kink/Tearing Modes in Cylindrical Geometry

    Full text link
    The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter, Δ′\Delta^\prime. In the presence of a steep monotonic current gradient, Δ′\Delta^\prime becomes a function of a parameter, σ0\sigma_0, characterising the ratio of the maximum current gradient to magnetic shear, and xsx_s, characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current "spike", so that there is a non-monotonic current profile, Δ′\Delta^\prime also depends on two parameters: κ\kappa, related to the ratio of the curvature of the current density at its maximum to the magnetic shear, and xsx_s, which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyro-kinetic calculations of current driven instabilities, is discussed, together with potential implications for the stability of the tokamak pedestal.Comment: To appear in Plasma Physics and Controlled Fusio

    Plasma shaping effects on the collisionless residual zonal flow level

    Get PDF

    Omnigenity as generalized quasisymmetry

    Get PDF
    Any viable stellarator reactor will need to be nearly omnigenous, meaning the radial guiding-center drift velocity averages to zero over time for all particles. While omnigenity is easier to achieve than quasisymmetry, we show here that several properties of quasisymmetric plasmas also apply directly or with only minor modification to the larger class of omnigenous plasmas. For example, concise expressions exist for the flow and current, closely resembling those for a tokamak, and these expressions are explicit in that no magnetic differential equations remain. A helicity (M,N) can be defined for any omnigenous field, based on the topology by which |B| contours close on a flux surface, generalizing the helicity associated with quasisymmetric fields. For generalized quasi-poloidal symmetry (M=0), the bootstrap current vanishes, which may yield desirable equilibrium and stability properties. A concise expression is derived for the radial electric field in any omnigenous plasma that is not quasisymmetric. The fact that tokamak-like analytical calculations are possible in omnigenous plasmas despite their fully-3D magnetic spectrum makes these configurations useful for gaining insight and benchmarking codes. A construction is given to produce omnigenous B(theta, zeta) patterns with stellarator symmetry.Comment: 37 pages, 8 figure

    A natural fuzzyness of de Sitter space-time

    Full text link
    A non-commutative structure for de Sitter spacetime is naturally introduced by replacing ("fuzzyfication") the classical variables of the bulk in terms of the dS analogs of the Pauli-Lubanski operators. The dimensionality of the fuzzy variables is determined by a Compton length and the commutative limit is recovered for distances much larger than the Compton distance. The choice of the Compton length determines different scenarios. In scenario I the Compton length is determined by the limiting Minkowski spacetime. A fuzzy dS in scenario I implies a lower bound (of the order of the Hubble mass) for the observed masses of all massive particles (including massive neutrinos) of spin s>0. In scenario II the Compton length is fixed in the de Sitter spacetime itself and grossly determines the number of finite elements ("pixels" or "granularity") of a de Sitter spacetime of a given curvature.Comment: 16 page

    Unsupervised machine learning of integrated health and social care data from the Macmillan Improving the Cancer Journey service in Glasgow

    Get PDF
    Background: Improving the Cancer Journey (ICJ) was launched in 2014 by Glasgow City Council and Macmillan Cancer Support. As part of routine service, data is collected on ICJ users including demographic and health information, results from holistic needs assessments and quality of life scores as measured by EQ-5D health status. There is also data on the number and type of referrals made and feedback from users on the overall service. By applying artificial intelligence and interactive visualization technologies to this data, we seek to improve service provision and optimize resource allocation.Method: An unsupervised machine-learning algorithm was deployed to cluster the data. The classical k-means algorithm was extended with the k-modes technique for categorical data, and the gap heuristic automatically identified the number of clusters. The resulting clusters are used to summarize complex data sets and produce three-dimensional visualizations of the data landscape. Furthermore, the traits of new ICJ clients are predicted by approximately matching their details to the nearest existing cluster center.Results: Cross-validation showed the model’s effectiveness over a wide range of traits. For example, the model can predict marital status, employment status and housing type with an accuracy between 2.4 to 4.8 times greater than random selection. One of the most interesting preliminary findings is that area deprivation (measured through Scottish Index of Multiple Deprivation-SIMD) is a better predictor of an ICJ client’s needs than primary diagnosis (cancer type).Conclusion: A key strength of this system is its ability to rapidly ingest new data on its own and derive new predictions from those data. This means the model can guide service provision by forecasting demand based on actual or hypothesized data. The aim is to provide intelligent person-centered recommendations. The machine-learning model described here is part of a prototype software tool currently under development for use by the cancer support community.Disclosure: Funded by Macmillan Cancer Support</p

    Sources of intrinsic rotation in the low flow ordering

    Get PDF
    A low flow, δf\delta f gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low flow ordering contains new terms, neglected in previous first principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation profile depends on the density and temperature profiles and on the up-down asymmetry.Comment: 20 page
    • …
    corecore