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Abstract

Plasma shaping e¤ects, such as elongation, triangularity and Shafranov shift have long been

considered an important ingredient in improving tokamak performance. It is known that the

growth rate of ion temperature gradient (ITG) turbulence can be regulated by these shaping

e¤ects and that the ITG turbulence level can also be regulated by zonal �ow. Moreover, recent

numerical simulation shows that the collsionless residual zonal �ow level can be in�uenced by these

shaping e¤ects. An analytical approach is used to explicitly evaluate plasma shaping e¤ects on the

collisionless residual zonal �ow. The results show that the residual zonal �ow level increases with

elongation, triangularity and the Shafranov shift.
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I. INTRODUCTION

Rosenbluth and Hinton [1] evaluated the collisionless residual zonal �ow level for a large

aspect ratio circular �ux surface tokamak cross section. Their procedure [1][2] can be gen-

eralized to retain the e¤ects of elongation, the Shafranov shift and triangularity by using

a model equilibrium [3][4]. Shaping is known to have a strong e¤ect on the tokamak con-

�nement [5]. In particular, numerical studies show that the growth rate of ion temperature

gradient (ITG) turbulence can have a strong dependence on these shaping e¤ects [6]. More-

over, it is known that zonal �ow is an important tool in regulating ITG turbulence [7][8][9].

A recent study using the gyrokinetic code GS2 to examine zonal �ow [10] �nds that the

collisionless residual zonal �ow level is strongly in�uenced by the plasma shape. However,

an ab initio analytical treatment is still desirable. Here we consider an analytical approach

based on an inverse aspect ratio expansion. The calculation employs a local MHD equi-

librium that contains the elongation and triangularity of the plasma shape, as well as the

dependence on safety factor and the Shafranov shift. The result shows that the residual

zonal �ow level increases strongly with elongation, and moderately with the Shafranov shift

and triangularity.

In the Rosenbluth-Hinton (R-H ) zonal �ow model, [1][2] the initial zonal �ow potential

is shielded by classical polarization due to gyromotion departure from a �ux surface. After

several bounce periods, the zonal �ow potential is shielded by the total plasma polarization

that also contains the drift departure from a �ux surface. In the large radial wavelength

limit, the total plasma polarization contains both classical polarization and neoclassical

polarization. The residual zonal �ow level is then given by [2]

�k (1) =
�k (0)

1 + mi(IS0)
2

n0Tihk2?=B2i
DR

d3vF0
vk
B

h
vk
B
�
�vk
B

�iE , (1)

where F0 is a local Maxwellian, k? = rS is the perpendicular wave vector, S = S ( )

is the eikonal of perturbed quantities, hAi �
H dlp
Bp
A=
H dlp
Bp
is the �ux surface average, and

A �
H
dl
vq
A=
H
dl
vq
is the bounce average of quantity A. The original R-H treatment utilizes a

large aspect ratio circular tokamak model [1] and shows that the residual zonal �ow level is

given by

�k (1) =
�k (0)

1 + 1:6q2=
p
"
, (2)
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where the factor of unity is classical and the q2=
p
" neoclassical. This calculation can be

extended to include the important plasma shaping e¤ects, such as elongation, Shafranov

shift and triangularity. To do so we discuss the MHD equilibrium employed in Sec. II.

This equilibrium is a simple limit [3][4] of the Miller equilibrium [11] in which the radial

variations of elongation, triangularity, safety factor and pressure are ignored. In Sec. III we

present the detailed evaluation of the e¤ects of shaping. A brief discussion of our results

follows in Sec. IV.

II. GLOBAL MHD EQUILIBRIUM

It is di¢ cult to �nd an analytically tractable MHD equilibrium which contains all the

important plasma cross section ingredients. However, for constant dp=d and IdI=d , there

exists an MHD equilibrium that satis�es the Grad-Shafranov equation, where p is the total

pressure and I = RBT with R the major radius and BT the toroidal magnetic �eld [3][4].

In this limit, the poloidal �ux function is written in the form

 (R;Z) =
 0
R40
[
�
R2 �R20

�2
+
Z2

E2
�
R2 �R2x

�
� �R20(R

2 ln
R2

R20
�
�
R2 �R20

�
� (R

2 �R20)
2

2R20
)], (3)

where the constant  0 sets the magnitude of the poloidal magnetic �ux  , the constant R0

represents the radial location of magnetic axis where  = 0, and Rx is the radial X point

location. The constants E, � and Rx in the preceding equation are functions of the Shafranov

shift (�), elongation (�) and triangularity (�). In spite of the assumption of constant dp=d 

and IdI=d , this global equilibrium is a good approximation for many cases of interest.

Near the magnetic axis the magnetic �ux becomes an approximate ellipse satisfying

 (x; z)

 0
= 4 (x+ s)2 +

z2

E2

�
1� R2x

R20

�
, (4)

where the shift s is de�ned as

s =
�
1 +

�

3

� x2
2
+

z2

4E2
, (5)

and the dimensionless variables x and z are de�ned by

R = R0 (1 + x) , (6)

Z = R0z. (7)
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We change variables from (x; z) to ("; �) by letting

x = " cos � ��cos2 � � �2

4E2
"2 sin2 �, (8)

z = �" sin �. (9)

where " is the inverse aspect ratio, � is the poloidal angle, the �ux function

� =
�
1 +

�

3

� "2
2

(10)

is the dimensionless Shafranov shift, and the constant � is the elongation of the �ux shape

de�ned by

� � 2Ep
1�R2x=R

2
0

. (11)

The triangularity � associated with Eqs. (8) and (9) is de�ned by � � (xc � xm) =", where

xm = � ("�=2E)2 is the major radius at which z reaches the highest point on the �ux surface,
and xc = �� is the major radius at the center of �ux surface. Using Eqs. (8) and (9) we

�nd

� =

�
�2

4E2
� �
"2

�
" =

"

1�R2x=R
2
0

� �
"
, (12)

where to the requisite order, the �ux function becomes

 = 4 0"
2, (13)

making the inverse aspect ratio " a �ux label. To simplify the notation, we introduce the

following two order unity constants

eA � �

"2
, (14)

eB � �

"2
+
�

"
. (15)

Then, the magnetic �ux can be written in the following way:

R = R0

�
1 + " cos � � eA"2 cos2 � � eB"2 sin2 �� ,

Z = R0�" sin �. (16)

Some quantities, such as the magnetic �eldB and the volume element dlp=Bp, are required

to evaluate the polarization in Eq. (1). The preceding local equilibrium provides a simple
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inverse aspect ratio expansion for these quantities. The poloidal magnetic �eld is computed

from Bp = jr j =R = 8 0" jr"j =R, giving

Bp =
8 0"

�R20

��
1� 2 eA" cos ���1 + " cos � � eA"2 cos2 � � eB"2 sin2 �� , (17)

where the numerator � is de�ned as

� =

r
�2 cos2 � + sin2 � + 4" sin2 � cos �

� eB � eA�+ 4"2 sin2 � cos2 � � eB � eA�2. (18)

The safety factor q depends on the poloidal �eld and is de�ned by

q ( ) � I ( )

2�

I
dlp
R2Bp

, (19)

where the poloidal arc length dlp = �R0"d� and I = RBT with BT the toroidal �eld. For a

large aspect ratio tokamak, Eq. (19) may be �rst expanded in " and then integrated over �

to obtain

q =
�R0I

8 0

�
1 +

1

2

�
1 + 3 eA+ eB� "2 +O �"4�� . (20)

Then, the poloidal �eld Bp can be expressed in terms of this safety factor

Bp =
I

R0

"

q

p
�2 cos2 � + sin2 � (1 +O (")) . (21)

The volume element dlp=Bp can also be expanded in " to obtain

dlp
Bp

=
q

I
R20d�

�
1� 2 eA" cos ���1 + " cos � � eA"2 cos2 � � eB"2 sin2 ���

1� 1
2

�
1 + 3 eA+ eB� "2 +O �"4�� . (22)

In addition, to O ("2), the magnetic �eld B and its inverse 1=B can be expanded in " to �nd

B = B0

�
1� " cos � + "2

�� eA+ 1 + �2

2q2

�
cos2 � +

� eB + 1

2q2

�
sin2 �

��
, (23)

1

B
=
1

B0

�
1 + " cos � � "2

�� eA+ �2

2q2

�
cos2 � +

� eB + 1

2q2

�
sin2 �

��
, (24)

where B0 is de�ned by B0 � I=R0 = RBT=R0. In this local equilibrium model, the trapped-

passing boundary is given by

�c = 1� "� "2
� eA+ �2

2q2

�
. (25)
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III. COLLISIONLESS RESIDUAL ZONAL FLOW LEVEL

Using the local equilibrium model from the preceding section, the collisionless residual

zonal �ow level in Eq. (1) can be evaluated. The perpendicular wave vector k? = S 0 jr j
gives �

k2?
B2

�
=

�
IS 0

"

q

�2 h
1 +

�
1 + 3 eA+ eB� "2i

H dlp
Bp

�2

B2(1�2 eA" cos �)2H dlp
Bp

. (26)

A small " expansion can be employed to evaluate the preceding equation. Since the volume

element dlp=Bp appears in both the numerator and denominator, it can be replaced in such

ratios by
dlp
Bp

! d�
�
1� 2 eA" cos ���1 + " cos � � eA"2 cos2 � � eB"2 sin2 �� (27)

without changing the solution. Therefore,�
k2?
B2

�
=

�
IS 0

"

q

�2
� (1 + �2)H dlp

Bp

�
1 +O

�
"2
��
, (28)

with dlp=Bp given by Eq. (27), andI
dlp
Bp

! 2�

�
1� "2

2

�
3 eA+ eB�� , (29)

where the use of an arrow indicates that Eq. (27) is employed.

The next step is to evaluate
DR

d3vF0v
2
k=B

2
E
in Eq. (1) for this local equilibrium. Note

�rst that
DR

d3vF0v
2
k=B

2
E
= h1=B2in0Ti=mi. Then, using Eq. (24) and applying the small

" expansion, it is easy to obtain*Z
d3vF0

v2k
B2

+
=

n0Ti
miB2

0

2�H dlp
Bp

�
1�

�
3

2
(3 eA+ eB � 1) + 1 + �2

2q2

�
"2
�
, (30)

where
H
dlp=Bp is given by Eq. (29).

The evaluation of
DR

d3vF0
�
vk=B

�
vk=B

E
in Eq. (1) is much more involved. Fortunately

only the passing particle contribution needs to be considered, leading to�Z
d3vF0

�vk
B

�2�
=
3n0Ti
2miB2

0

I
dlp
Bp

�cZ
0

d�
1H dlp
Bp

B
B0�

, (31)

where the trapped-passing boundary �c is de�ned in Eq. (25), and � =
��vk�� =v. The integralH dlp

Bp
B
B0�

can be written as I
dlp
Bp

B

B0�
=

I
dlp
Bp

p
B=B0p

B0=B � �
, (32)
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where we already have expressions for B0=B and B=B0 in Eqs. (24) and (23). Using these

expressions, we �nd

1p
B0=B � �

=
1r

1� �+ " cos � �
h� eA+ �2

2q2

�
cos2 � +

� eB + 1
2q2

�
sin2 �

i
"2
. (33)

Recalling Eq. (27), we have

dlp
Bp

p
B=B0 ! d�f1 + "

�
1

2
� 2 eA� cos � + [(�1

8
+
3

2
eA

+
�2

4q2
) cos2 � + (�1

2
eB + 1

4q2
) sin2 �]"2g. (34)

We next let � = 1� �, with " < � � 1 for the passing particles. Then, 1=
p
B0=B � � may

be expanded in powers of " to obtain

1p
B0=B � �

=
1p
�
(1� 1

2

" cos �

�
+
1

2

"2

�
(

� eA+ �2

2q2

�
cos2 �+� eB + 1

2q2

�
sin2 �) +

3

8

"2

� 2
cos2 � + ::::+O

�
"M+1

�
, (35)

where the expansion order M depends on the desired accuracy of the �nal integral in Eq.

(31). Therefore, the integrand of
H dlp
Bp

B
B0�

can be expressed as an " expansion with the

coe¢ cients to be polynomials in 1=� . As a result, Eq. (31) can be integrated to obtain the

" expansion [12]�Z
d3vF0

�vk
B

�2�
=

n0Ti
miB2

0

2�H dlp
Bp

f1� 1:635"3=2 � [1 + �
2

2q2

+ (
3

2
(3 eA+ eB)� 1)]"2 � 1

2
(�0:722 + 1:502 eA

+ 1:443 eB + 0:722� 0:692�2
q2

)"5=2g, (36)

that is accurate to O
�
"5=2
�
. This equation together with Eq. (30) gives

�Z
d3vF0

�vk
B

�2�
�
*Z

d3vF0

 
v2k
B2

!+
=

n0Ti
miB2

0

2�H dlp
Bp

[1:635"3=2 +
1

2
"2 � 1

2
(�0:722

+ 1:502 eA+ 1:443 eB + 0:722� 0:692�2
q2

)"5=2]. (37)
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The collisionless residual zonal �ow level in Eq. (1) can be evaluated by using the pre-

ceding result and Eq. (28), to �nd

�k (1) =
�k (0)

1 + Sq2=
p
"
, (38)

where the shaping function S is given by

S =
1

1 + �2
(3:27 +

p
"+ 0:722"� 1:443�

� 2:945�
"
+
0:692�2 � 0:722

q2
). (39)

If � = 1 , � = 0, � = 0, and q ! 1, then the plasma shape becomes circular and the

residual zonal �ow level returns to the R-H value �k (0) = (1 + 1:6q2=
p
") but with higher

order " corrections retained that act to reduce the residual zonal �ow level.

IV. CONCLUSION AND DISCUSSION

In the preceding section we obtained an analytical formula for the collisionless residual

zonal �ow level in a shaped plasma. This is the �rst analytical gyrokinetic treatment of zonal

�ow that incorporates the important plasma shaping e¤ects associated with elongation, the

Shafranov shift, and triangularity. It provides a benchmark for numerical codes to investigate

shaping e¤ects on zonal �ow.

As shown in Figs. 1, 2 and 3, the residual zonal �ow level increases with elongation,

triangularity and Shafranov shift. From Eq. (39), we see that elongation is the leading

order shaping e¤ect, and that the Shafranov shift and triangularity are one order smaller

in ". Hence, the residual zonal �ow level increases with elongation more rapidly than with

the Shafranov shift and triangularity, as shown in the �gures. This behavior is reasonable

since in the equilibrium model, elongation is one order larger in " than triangularity and the

Shafranov shift. From Fig. 1, we see that when the elongation increases from 1 to 3, the

residual zonal �ow increases about 4 times. Recall that the energy associated with the zonal

�ow is/ j�kj2. If we assume the increased zonal �ow energy is due to energy transferred from
the turbulence, then the turbulent transport may be reduced to one sixteenth by increasing

the elongation from circular to 3. Therefore, this simple model shows the in�uence of

elongation on turbulence is substantial.
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A recent numerical study [10] yields a �t for elongation and triangularity with a

dependence very similar to our analytical result. But for large elongation, this numerical

calculation shows a stronger dependence on triangularity than our analytical model. How-

ever, the equilibrium model [11] in this numerical calculation includes not only the shaping

parameters like elongation, triangularity, safety factor, and Shafranov shift, but also the

radial gradients of them, and also takes the triangularity to be a function of elongation.

This result may suggest that the gradients of these shaping parameters play a positive role

in increasing the residual zonal �ow. Although, it should be kept in mind that this Miller

equilibrium as used in the code is a local solution to the Grad-Shafranov equation rather

than a global solution as considered here. As a result, this local �t in the vicinity of a �ux

surface will fail for signi�cant departures from the �ux surface or if parameters are varied

in a manner incompatible with it remaining a solution of the Grad-Shafranov equation. A

comprehensive analytical model including the additional gradient e¤ects that is also a global

solution of the Grad-Shafranov equation might be possible for pressure and I2 pro�les linear

in  ; however, the expression for the residual may then be too complex to be useful.
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FIGURE CAPTIONS

Fig. 1 The residual zonal �ow level varies with elongation � for q = 2, " = 0:2, � = 0:04,

and � = 0.

Fig. 2 The residual zonal �ow level varies with triangularity � for q = 2, " = 0:2,

� = 0:04, and � = 1:8.

Fig. 3 The residual zonal �ow level varies with Shafranov shift � for q = 2, " = 0:2,

� = 1:8, and � = 0:0.
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