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1. Introduction

Experimental observations have shown that tokamak plasmas rotate spontaneously

without momentum input [1]. This intrinsic rotation has been the object of recent

work [1, 2] because of its relevance for ITER [3], where the projected momentum input

from neutral beams is small, and the rotation is expected to be mostly intrinsic.

The origin of the intrinsic rotation is still unclear. There has been some

theoretical work in turbulent transport of momentum using gyrokinetic simulations

[4, 5, 6, 7, 8, 9, 10, 11, 12], and two main mechanisms have been proposed as candidates

to explain intrinsic rotation. On the one hand, the momentum pinch due to the Coriolis

drift [4] has been argued to transport momentum generated in the edge. On the other

hand, it has also been argued that up-down asymmetry generates intrinsic rotation

[7, 8]. However, neither of these explanations are able to account for all experimental

observations. The up-down asymmetry is only large in the edge, generating rotation in

that region that then needs to be transported inwards by the Coriolis pinch. Thus,

intrinsic rotation in the core could only be explained by the pinch. The pinch of

momentum is not sufficient because it does not allow the toroidal rotation to change

sign in the core as is observed experimentally [13].

In this article we present a new model implementable in δf flux tube simulations

[14, 15, 16, 17]. This model is based on the low flow ordering of [18], and self-consistently

includes higher order contributions. As a result, new drive terms for the intrinsic

rotation appear that depend on the gradients of the background profiles of density

and temperature and on the heating mechanisms.

We present two new effects, related to the ion-electron collisions and the heating,

that were not treated in the original work [18]. In addition, we recast the results from

[18] in a form similar to the equations in the high flow ordering [19, 20]. These are the

equations that have been implemented in most gyrokinetic codes that are employed

to study momentum transport. For this reason, the new form of the equations is

useful to identify the differences with previous models. Finally, we discuss how the new

contributions drive intrinsic rotation and we show that the intrinsic rotation resulting

from these new processes depends on density and temperature gradients and on the

heating mechanisms.

In the remainder of this article we present the model, developed originally in [18],

in a form more suitable for δf flux tube simulation. In Section 2 we give the complete

model, and in Section 3 we discuss its implications for intrinsic rotation. Appendix A

contains the details of the transformation from the equations in [18] to the formulation

in this article. In Appendix B we discuss the treatment of the ion-electron collision

operator.
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2. Transport of toroidal angular momentum

The derivation of the transport of toroidal angular momentum in the low flow regime,

including both turbulence and neoclassical effects, is described in detail in [18]. To

simplify the derivation, the extra expansion parameter Bp/B � 1 was employed, with

B the total magnetic field and Bp its poloidal component. In this section, we review the

results of reference [18], recast them in a more convenient form and add a collisional term

and a term that depends on the heating mechanisms that were not treated previously.

We assume that the turbulence is electrostatic and that the magnetic field is

axisymmetric, i.e., B = I∇ζ + ∇ζ × ∇ψ, where ψ is the poloidal magnetic flux, ζ

is the toroidal angle, and we use a poloidal angle θ as our third spatial coordinate.

With an axisymmetric magnetic field, in steady state and in the absence of momentum

input, the equation that determines the rotation profile is 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T = 0, where

↔
Pi=

∫
d3v′ fiMv′v′ is the ion stress tensor, M is the ion mass, R is the major radius, ζ̂

is the unit vector in the toroidal direction, 〈. . .〉ψ = (V ′)−1
∫
dθ dζ (...)/(B · ∇θ) is the

flux surface average, V ′ ≡ dV/dψ =
∫
dθ dζ (B · ∇θ)−1 is the derivative of the volume

with respect to ψ, and 〈. . .〉T is the coarse grain or “transport” average over the time

and length scales of the turbulence, much shorter than the transport time scale δ−2
i a/vti

and the minor radius a. Here δi = ρi/a � 1 is the ion gyroradius ρi over the minor

radius a, and vti is the ion thermal speed. Note that we use the prime in v′ to indicate

that the velocity is measured in the laboratory frame. Later we will find the equations

in a convenient rotating frame where the velocity is v = v′ − RΩζ ζ̂.

In reference [18] we derived a method to calculate 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T to order

(B/Bp)δ
3
i piR|∇ψ|, with pi the ion pressure. We present the method again in different

form to make it easier to compare with previous work in the high flow regime [19, 20].

In addition, instead of using the simplified ion Fokker-Planck equation of reference [18],

∂fi
∂t

+ v′ · ∇fi +
Ze

M

(
−∇φ +

1

c
v′ × B

)
· ∇v′fi = Cii{fi}, (1)

where Cii is the ion-ion collision operator, φ is the electrostatic potential, Ze is the ion

charge, and e and c are the electron charge magnitude and the speed of light, in this

article we use the more complete equation

∂fi
∂t

+ v′ · ∇fi +
Ze

M

(
−∇φ+

1

c
v′ × B

)
· ∇v′fi = Cii{fi} + Cie{fi, fe} + Sht, (2)

where Cie{fi, fe} is the ion-electron collision operator and Sht ∼ δ2
i fivti/a is a source

that models the different heating mechanisms. Applying the procedure in reference [18]

to equation (2) we find two additional terms in the expression for 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T

that were not considered in [18].

In subsection 2.1 we explain how we split the distribution function and the

electrostatic potential into different pieces, and we present the equations to self-

consistently obtain them. In subsection 2.2 we evaluate 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T employing

the pieces of the distribution function and the potential obtained in subsection 2.1.
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Table 1. Pieces of the potential.

Potential Size Length scales Time scales

φ0(ψ, t) Te/e ka ∼ 1 ∂/∂t ∼ δ2i vti/a

φnc
1 (ψ, θ, t) (B/Bp)δiTe/e ka ∼ 1 ∂/∂t ∼ δ2i vti/a

φnc
2 (ψ, θ, t) (B/Bp)2δ2i Te/e ka ∼ 1 ∂/∂t ∼ δ2i vti/a

φtb(r, t) φtb
1 ∼ δiTe/e k⊥ρi ∼ 1 ∂/∂t ∼ vti/a

φtb
2 ∼ (B/Bp)δ2i Te/e k||a ∼ 1

Before presenting all the results, we emphasize that our results and order of magnitude

estimates are valid for Bp/B � 1 and for collisionality in the range δ2
i � qRνii/vti<∼1

[18], where νii is the ion-ion collision frequency and q is the safety factor.

2.1. Distribution function and electrostatic potential

The electrostatic potential is composed to the order of interest by the pieces in Table 1

[18]. The axisymmetric long wavelength pieces φ0(ψ, t), φ
nc
1 (ψ, θ, t) and φnc

2 (ψ, θ, t) are

the zeroth, first and second order equilibrium pieces of the potential. The lowest order

component φ0 is a flux surface function. The corrections φnc
1 and φnc

2 give the electric

field parallel to the flux surface, established to force quasineutrality at long wavelengths

(the superscript nc refers to neoclassical because these are long wavelength contributions;

however, we will show that turbulence can affect the final value of φnc
1 and φnc

2 ). We need

not calculate φnc
2 because it will not appear in the final expression for 〈〈Rζ̂·

↔
Pi ·∇ψ〉ψ〉T.

The piece φtb(r, t) is turbulent and includes both axisymmetric components (zonal flow)

and non-axisymmetric fluctuations. It is small in δi but it has strong perpendicular

gradients, i.e., k⊥ρi ∼ 1. Its parallel gradient is small, i.e., k||a ∼ 1. The function

φtb is calculated to order (B/Bp)δ
2
i Te/e, i.e., φtb = φtb

1 + φtb
2 with φtb

1 ∼ δiTe/e and

φtb
2 ∼ (B/Bp)δ

2
i Te/e. It is convenient to keep both pieces together as φtb as we do

hereafter.

To write the distribution function it will be useful to consider the reference frame

that rotates with toroidal angular velocity Ωζ = −c ∂ψφ0 − (c/Zeni)∂ψpi, where ni(ψ, t)

and pi(ψ, t) are the lowest order ion density and pressure. In this new reference frame it

is easier to compare with previous formulations [19, 20]. To shorten the presentation, we

perform the change of reference frame directly in the gyrokinetic variables. It is possible

to do so easily because we are expanding in the parameter B/Bp � 1. We first present

the gyrokinetic variables that we obtained for the laboratory frame and we argue later

how they must be modified to give the gyrokinetic variables in the rotating frame. In

[18] we used as gyrokinetic variables the gyrocenter position R = r+R1 +R2 + . . ., the

gyrokinetic kinetic energy E = E0+E1+E2+. . ., the magnetic moment µ = µ0+µ1+. . .

and the gyrokinetic gyrophase ϕ = ϕ0+ϕ1+. . ., where E0 = (v′)2/2 is the particle kinetic

energy in the laboratory frame, µ0 = (v′⊥)2/2B is the lowest order magnetic moment,

ϕ0 = arctan(v′ · ê2/v
′ · ê1) is the lowest order gyrophase, R1 = Ω−1

i v′ × b̂ ∼ δiL is
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the first order correction to the gyrocenter position, E1 = Ze(φ− 〈φ〉)/M ∼ δiv
2
ti is the

first order correction to the gyrokinetic kinetic energy, and the corrections R2 ∼ δ2
i L,

E2 ∼ δ2
i v

2
ti, µ1 ∼ δiv

2
ti/B and ϕ1 ∼ δi are defined in [21]. Here Ωi = ZeB/Mc is the ion

gyrofrequency, ê1(r) and ê2(r) are two orthonormal vectors such that ê1 × ê2 = b̂, and

〈. . .〉 = (2π)−1
∮
dϕ (. . .)|R,E,µ,t is the gyroaverage holding R, E, µ and t fixed. When

the ion distribution function is written as a function of these gyrokinetic variables, it

does not depend on the gyrophase ϕ up to order (Bp/B)δ2
i (qRνii/vti)fMi [18, 21], where

fMi is the lowest order distribution function that is a Maxwellian. For the magnetic

moment and the gyrophase, only the first order corrections µ1 and ϕ1 are needed because

the lowest order distribution function fMi does not depend on µ or ϕ. Moreover, since

in [18] we expand on B/Bp � 1, the distribution function need only be known to

order (B/Bp)δ
2
i fMi. Consequently, the piece of the distribution function that depends

on the gyrophase, of order (Bp/B)δ2
i (qRνii/vti)fMi, is negligible, and the gyrokinetic

variables R, E, µ and ϕ only need to be obtained to order (B/Bp)δ
2
i L, (B/Bp)δ

2
i v

2
ti,

(B/Bp)δiv
2
ti/B and (B/Bp)δi, respectively, implying that the corrections R2, E2, µ1 and

ϕ1 are not needed for the final result. To change to the new reference frame, where

the velocity is v = v′ − RΩζ ζ̂, the distribution function that is independent of ϕ has

to be written as a function of the new gyrokinetic variables R, ε and µ. Note that the

gyrocenter position and the magnetic moment are the same in both reference frames

to the order of interest. The reason is that the toroidal rotation has two components,

one parallel to the magnetic field, RΩζ ζ̂ · b̂ = IΩζ/B ∼ (B/Bp)δivti, and the other

perpendicular, RΩζ |ζ̂ − b̂b̂ · ζ̂| = |∇ψ|Ωζ/B ∼ δivti, and the parallel velocity is larger

by B/Bp � 1. Since in [18] the gyrokinetic variables R and µ are to be obtained to

order (B/Bp)δ
2
iL and (B/Bp)δiv

2
ti/B, and in R and µ only the perpendicular velocity

v′
⊥ = v⊥ + RΩζ(ζ̂ − b̂b̂ · ζ̂) enters, we can safely neglect the corrections due to the

change of reference frame because they are of order δ2
iL and δiv

2
ti/B, respectively. In

contrast, the kinetic energy E as defined in [18] cannot be used in the rotating frame

because it includes the parallel velocity v′|| = v|| + IΩζ/B. We use a new kinetic energy

variable ε that is related to the old kinetic energy variable by ε = E − IΩζu
′/B, where

u′ = ±
√

2(E − µB) is the gyrokinetic parallel velocity in the laboratory frame. It is

easy to check that u = ±
√

2[ε− µB + (I/B)2Ω2
ζ/2] is equal to u = u′− IΩζ/B and it is

the gyrokinetic parallel velocity in the rotating frame. With this relation, we find that

another way to interpret the new energy variable

ε =
u2

2
+ µB −

R2Ω2
ζ

2
(3)

is realizing that it is the kinetic energy in the rotating frame plus the potential due to

the centrifugal force. To write expression (3) we have used that I/B ' R for Bp/B � 1.

In Appendix A we rewrite the results in [18] using the new gyrokinetic kinetic energy ε.

The different pieces of the ion distribution function are given in Table 2 [18]. In

this table, m is the electron mass. The functions fMi, H
nc
i1 , Hnc

i2 , Htb
i2 , H ie

i2 and Hht
i2 are

axisymmetric long wavelength contributions. The Maxwellian fMi(ψ(R), ε) is uniform

in a flux surface. The first and second order corrections Hnc
i1 and Hnc

i2 are neoclassical
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Table 2. Pieces of the ion distribution function.

Distribution function Size Length scales Time scales

fMi(ψ(R), ε, t) fMi ka ∼ 1 ∂/∂t ∼ δ2
i vti/a

Hnc
i1 (ψ(R), θ(R), ε, µ, t) (B/Bp)δifMi ka ∼ 1 ∂/∂t ∼ δ2

i vti/a

Hnc
i2 (ψ(R), θ(R), ε, µ, t) (B/Bp)

2δ2
i fMi ka ∼ 1 ∂/∂t ∼ δ2

i vti/a

Htb
i2 (ψ(R), θ(R), ε, µ, t) (B/Bp)(vti/qRνii)δ

2
i fMi ka ∼ 1 ∂/∂t ∼ δ2

i vti/a

H ie
i2(ψ(R), θ(R), ε, µ, t) (B/Bp)δi

√
m/MfMi ka ∼ 1 ∂/∂t ∼ δ2

i vti/a

Hht
i2 (ψ(R), θ(R), ε, µ, t) (B/Bp)(vti/qRνii)Shta/vti ka ∼ 1 ∂/∂t ∼ δ2

i vti/a

f tb
i (R, ε, µ, t) f tb

i1 ∼ δifMi k⊥ρi ∼ 1 ∂/∂t ∼ vti/a

f tb
i2 ∼ (B/Bp)δ

2
i fMi k||a ∼ 1

Table 3. Pieces of the electron distribution function.

Distribution function Size Length scales Time scales

fMe(ψ(R), ε, t) fMe ka ∼ 1 ∂/∂t ∼ δ2i vti/a

Hnc
e1 (ψ(R), θ(R), ε, µ, t) (B/Bp)δifMe ka ∼ 1 ∂/∂t ∼ δ2i vti/a

f tb
e (R, ε, µ, t) f tb

e1 ∼ δifMe k⊥ρi ∼ 1 ∂/∂t ∼ vti/a

f tb
e2 ∼ (B/Bp)δ2i fMe k||a ∼ 1

corrections, and they are not the functions F nc
i1 and F nc

i2 in [18] because we are now

working in the rotating frame. The function Htb
i2 is an axisymmetric piece of the

distribution function that originates from collisions acting on the ions transported by

turbulent fluctuations into a given flux surface [18]. The functions H ie
i2 andHht

i2 that were

not included in [18] have their origin in the ion-electron collisions and in the heating

mechanism. The function f tb
i is the turbulent contribution. It will be determined

self-consistently up to order (B/Bp)δ
2
i fMi, i.e., f tb

i = f tb
i1 + f tb

i2 with f tb
i1 ∼ δifMi and

f tb
i2 ∼ (B/Bp)δ

2
i fMi. It is convenient to combine both pieces of the turbulent distribution

function into one function f tb
i .

The electron distribution function is very similar to the ion distribution function.

It will have its own gyrokinetic variables that can be easily deduced from the ion

counterparts. To the order of interest in this calculation, the electron distribution

function is determined by the pieces in Table 3. The long wavelength, axisymmetric

pieces fMe and Hnc
e1 are the lowest order Maxwellian and the first order neoclassical

correction. The second order long wavelength neoclassical correction is not needed

for transport of momentum because of the small electron mass. The piece f tb
e is the

short wavelength, turbulent component that will be self-consistently calculated to order

(B/Bp)δ
2
i fMe.

We now proceed to describe how to find the different pieces of the distribution

function and the potential. We use the equations in [18] but we change to the new

gyrokinetic kinetic energy ε. The details of this transformation are contained in

Appendix A.
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2.1.1. First order neoclassical distribution function and potential. The equation for

Hnc
i1 is

ub̂ · ∇R

[
Hnc
i1 +

Zeφnc
1

Ti
fMi +

(
Mε

Ti
− 5

2

)
IufMi

ΩiTi

∂Ti
∂ψ

]
− C

(`)
ii {Hnc

i1 } = 0, (4)

where u = ±
√

2(ε− µB +R2Ω2
ζ/2) ' ±

√
2(ε− µB) is the gyrokinetic parallel velocity

and C
(`)
ii is the linearized ion-ion collision operator. The correction Hnc

i1 gives the parallel

component of the velocity [22, 23] Wnc
i = b̂

∫
d3v Hnc

i1 v|| = (kcIB/Ze〈B2〉ψ)∂ψTi,

where k is a constant that depends on the collisionality and the magnetic geometry.

Interestingly, the density perturbation due to Hnc
i1 is small for qRνii/vti � 1, i.e.,∫

d3v Hnc
i1 ∼ (B/Bp)(qRνii/vti)δini � (B/Bp)δini [18]. This will be important when

determining φnc
1 below.

The equation for Hnc
e1 is similar to (4) and it is given by [22, 23]

ub̂ · ∇R

{
Hnc
e1 − eφnc

1

Te
fMe −

[
1

ZniTe

∂pi
∂ψ

+
1

pe

∂pe
∂ψ

+

(
Mε

Te
− 5

2

)
1

Te

∂Te
∂ψ

]
IufMe

Ωe

}

−C(`)
ee {Hnc

e1} − C
(`)
ei {Hnc

e1} = −efMe

Te
ub̂ · EA, (5)

where Ωe = eB/mc is the electron gyrofrequency, EA is the electric field driven by

the transformer, C
(`)
ee is the linearized electron-electron collision operator and C

(`)
ei is

the linearized electron-ion collision operator. The lowest order solution for Hnc
e1 is the

Maxwell-Boltzmann response (eφnc
1 /Te)fMe ∼ (B/Bp)δifMe. The rest of the terms are

small because they are of order (B/Bp)δefMe ∼ (B/Bp)
√
m/MδifMi � (B/Bp)δifMe,

where δe = ρe/a is the ratio between the electron gyroradius ρe and the minor radius a.

Finally the poloidal variation of the potential is determined by quasineutrality,

Z

∫
d3v Hnc

i1 + Z

∫
d3v Htb

i2 =
eφnc

1

Te
ne, (6)

giving eφnc
1 /Te ∼ (B/Bp)(qRνii/vti)δi. We have included the density

∫
d3v Htb

i2 ∼
(B/Bp)(vti/qRνii)δ

2
i ni because it becomes important for qRνii/vti<∼(f tb

i /fMi)
√
a/ρi �

1 with f tb
i /fMi ∼ ρi/a [18].

2.1.2. Turbulent distribution function and potential. The turbulent piece of the ion

distribution function is obtained using the gyrokinetic equation

Df tb
i

Dt
+
(
ub̂ + vM + vC + vtb

E

)
· ∇Rf

tb
i −

〈
C

(`)
ii

{
htb
i

}〉
−
〈
C

(`)
ie

{
htb
i , h

tb
e

}〉

= −vtb
E · ∇Rψ

[
1

ni

∂ni
∂ψ

+

(
Mε

Ti
− 3

2

)
1

Ti

∂Ti
∂ψ

+
MIu

BTi

∂Ωζ

∂ψ

]
fMi − vtb

E · ∇RH
nc
i1

− ZefMi

Ti

(
ub̂ + vM + vC

)
· ∇R〈φtb〉 +

Ze

M

∂Hnc
i1

∂ε

(
ub̂ + vM

)
· ∇R〈φtb〉, (7)

where D/Dt = ∂t + RΩζ ζ̂ · ∇R is the time derivative in the rotating frame, u =

±
√

2[ε− µB +R2Ω2
ζ/2] ' ±

√
2(ε− µB) is the parallel velocity in the rotating frame,

vM = (µ/Ωi)b̂ × ∇RB + (u2/Ωi)b̂ × (b̂ · ∇Rb̂) are the ∇B and curvature drifts,
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vC = (2uΩζ/Ωi)b̂× [(∇R× ζ̂)× b̂] is the Coriolis drift, vtb
E = −(c/B)∇R〈φtb〉× b̂ is the

turbulent E×B drift, C
(`)
ii {htb

i } is the linearized ion-ion collision operator, C
(`)
ie {htb

i , h
tb
e }

is the linearized ion-electron collision operator, and 〈. . .〉 = (2π)−1
∮
dϕ (. . .)|R,E,µ,t is

the gyroaverage holding R, E, µ and t fixed. The ion-electron collision operator can be

approximated by

C
(`)
ie {htb

i , h
tb
e } =

nemνei(Te − Ti)

piM

(
Mv2

Ti
− 3

)
eφtb

Te
fMi

+
nemνei
niM

∇v ·
(
Te
M

∇vh
tb
i + vhtb

i

)
− 1

pi
(Ftb

ei − nemνeiW
tb
i ) · vfMi, (8)

where νei = (4
√

2π/3)Z2e4ni ln Λ/m1/2T
3/2
e is the electron-ion collision frequency, ln Λ

is Coulomb’s logarithm, niW
tb
i =

∫
d3v htb

i v is the turbulent ion flow, and

Ftb
ei = nemνeiW

tb
i − 2πZ2e4ni ln Λ

m

∫
d3ve∇ve∇veve · ∇vh

tb
e1 (9)

is the friction force on the electrons due to collisions with ions. The functions that enter

in the collision operators are

htb
i = f tb

ig +
Ze(φtb − 〈φtb〉)

M

(
−MfMi,0

Ti
+
∂Hnc

i1,0

∂ε0

+
1

B

∂Hnc
i1,0

∂µ0

)
(10)

and

htb
e = f tb

e0 − 1

Ωe

(v × b̂) · ∇f tb
e0 +

mcfMe,0

BTe
(v × b̂) · ∇φtb. (11)

Here the subscript g in f tb
ig = f tb

i (Rg, v
2/2, v2

⊥/2B, t) indicates that we have replaced

the variables R, ε and µ by Rg = r + Ω−1
i v × b̂, v2/2 and v2

⊥/2B; similarly,

the subscript 0 in fMi,0 = fMi(ψ(r), v2/2, t), fMe,0 = fMe(ψ(r), v2/2, t), Hnc
i1,0 =

Hnc
i1 (ψ(r), θ(r), v2/2, v2

⊥/2B, t), Hnc
e1,0 = Hnc

e1 (ψ(r), θ(r), v2/2, v2
⊥/2B, t) and f tb

e0 =

f tb
e (r, v2/2, v2

⊥/2B, t) indicates that we have replaced the variables R, ε and µ by r,

v2/2 and v2
⊥/2B.

The equation for electrons is equivalent to the one for the ions, giving

Df tb
e

Dt
+
(
ub̂ + vM + vtb

E

)
· ∇Rf

tb
e −

〈
C(`)
ee

{
htb
e

}〉
−
〈
C

(`)
ei

{
htb
e

}〉
= −vtb

E · ∇Rψ

[
1

ne

∂ne
∂ψ

+

(
Mε

Te
− 3

2

)
1

Te

∂Te
∂ψ

]
fMe +

efMe

Te

(
ub̂ + vM

)
· ∇R〈φtb〉, (12)

where C
(`)
ee is the linearized electron-electron collision operator and C

(`)
ei is the linearized

electron-ion collision operator. If we were to neglect the effect of the trapped

electrons, the solution to this equation would simply be the adiabatic response f tb
e '

(e〈φtb〉/Te)fMe.

Finally, the electrostatic potential φtb is obtained from the quasineutrality equation

Z

∫
d3v

Ze(φtb − 〈φtb〉)
M

[
−MfMi,0

Ti
+

(
∂Hnc

i1,0

∂ε0
+

1

B

∂Hnc
i1,0

∂µ0

)]

+Z

∫
d3v f tb

ig =

∫
d3v f tb

eg . (13)
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2.1.3. Second order, long wavelength distribution function. The long wavelength pieces

Hnc
i2 , Htb

i2 , H ie
i2 and Hht

i2 are given by

ub̂ · ∇RH
α
i2 − C

(`)
ii {Hα

i2} = Sα −
〈∫

d3v Sα

+

(
2Mε

3Ti
− 1

)∫
d3v Sα

(
Mε

Ti
− 3

2

)〉

ψ

fMi

ni
, (14)

where α = nc, tb, ie, ht, and

Snc = − MIufMi

BTi

∂Ωζ

∂ψ
vM · ∇Rψ −

(
vC − c

B
∇Rφ

nc
1 × b̂

)
· ∇Rψ

(
Mε

Ti
− 5

2

)
fMi

Ti

∂Ti
∂ψ

− vM · ∇RH
nc
i1 +

I

niMΩi

∂pi
∂ψ

b̂ · ∇RH
nc
i1 − ZefMi

Ti

(
ub̂ · ∇Rφ

nc
2 + vM · ∇Rφ

nc
1

)

+
Ze

M

(
ub̂ · ∇Rφ

nc
1 − 1

Zeni

∂pi
∂ψ

vM · ∇Rψ

)
∂Hnc

i1

∂ε
+
〈
C

(n`)
ii {Hnc

i1 , H
nc
i1 }
〉

; (15)

Stb = −|u|
B

∇R ·
(
B

|u|
〈
f tb
i vtb

E

〉
T

)
+
Ze

M

|u|
B

∂

∂ε

(
B

|u|

〈
f tb
i

(
ub̂ + vM

)
· ∇R〈φtb〉

〉
T

)
; (16)

Sie =
nemνei
niM

〈
∇v ·

(
Te
M

∇vH
nc
i1 + vHnc

i1

)〉
− u

pi
(Fnc

ei − nemνeiW
nc
i ) · b̂fMi, (17)

where niW
nc
i = b̂

∫
d3v Hnc

i1 v|| is the axisymmetric long wavelength ion flow and

Fnc
ei = nemνeiW

nc
i − 2πZ2e4ni ln Λ

m

∫
d3ve∇ve∇veve · ∇vH

nc
e1 (18)

is the axisymmetric long wavelength friction force on the electrons due to collisions with

ions; and Sht is the source in the kinetic equation that mimics the heating mechanism.

For radiofrequency heating, Sht can be obtained from the quasilinear models that are

widely used. It is also possible to use model sources. For example, in [24, 25] simplified

sources were employed to study for the first time the effect of radiofrequency heating

on transport of momentum.

2.2. Calculation of the momentum transport

We obtain an equation for 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T similar to equation (39) of [18] by

employing the same procedure that was used in that reference, but starting from the

more complete Fokker-Planck equation (2). The final result is as in equation (39) of

[18] plus the new terms

−M
2c

2Ze

〈〈∫
d3v′Cie{fi}R2(v′ · ζ̂)2 +

∫
d3v′ Sht(r,v′)R2(v′ · ζ̂)2

〉

ψ

〉

T

. (19)

Adding these new terms to expression (39) from [18] and using that for B/Bp � 1,

Rv · ζ̂ ' Iv||/B, we find

〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T = Πtb

−1 + Πtb
0 + Πnc

−1 + Πnc
0 + Πie

−1 + Πie
0 + Πht +

Mc〈R2〉ψ
2Ze

∂pi
∂t
, (20)
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Table 4. Contributions to transport of momentum.

Π Size [(B/Bp)δ
3
i piR|∇ψ|] Dependences

Πtb
−1 (Bp/B)∆udδ

−1
i for ∆ud>∼(B/Bp)δi ∂ψΩζ ,Ωζ ,∆ud, ∂ψTi, ∂ψne, ∂ψTe, ∂

2
ψTi

1 for ∆ud<∼ (B/Bp)δi
Πtb

0 1 ∂ψTi, ∂ψne, ∂ψTe, ∂
2
ψTi, ∂

2
ψne, ∂

2
ψTe

Πnc
−1 ∆ud(qRνii/vti)δ

−1
i for ∆ud>∼ (B/Bp)δi ∂ψΩζ ,∆ud, ∂ψTi, ∂ψne, ∂

2
ψTi

(B/Bp)(qRνii/vti) for ∆ud<∼(B/Bp)δi
Πnc

0 (B/Bp)(qRνii/vti) ∂ψTi, ∂ψne, ∂
2
ψTi

Πie
−1 (Bp/B)(qRνii/vti)δ

−2
i

√
m/M Ti − Te

Πie
0 (qRνii/vti)δ

−1
i

√
m/M ∂ψTi, ∂ψne, ∂ψTe,E

A

Πht δ−2
i (Shta/vtifMi) Heating

with

Πtb
−1 = −

〈〈
c

B
(∇φtb × b̂) · ∇ψ

∫
d3v f tb

ig

(
IMv||
B

+MRΩζ

)〉

ψ

〉

T

, (21)

Πtb
0 = − M2c

2Ze

1

V ′
∂

∂ψ
V ′

〈〈
c

B
(∇φtb × b̂) · ∇ψ

∫
d3v f tb

ig

I2v2
||

B2

〉

T

〉

ψ

+

〈〈
cI

B
b̂ · ∇φtb

∫
d3v f tb

ig

IMv||
B

〉

ψ

〉

T

− M2c

2Ze

〈∫
d3v C

(`)
ii {Htb

i2,0}
I2v2

||

B2

〉

ψ

, (22)

Πnc
−1 = −M

2c

2Ze

〈∫
d3v C

(`)
ii {Hnc

i1,0 +Hnc
i2,0}

I2v2
||

B2

〉

ψ

, (23)

Πnc
0 = −M

2c

2Ze

〈∫
d3v C

(n`)
ii {Hnc

i1,0, H
nc
i1,0}

I2v2
||

B2

〉

ψ

−M3c2

6Z2e2
1

V ′
∂

∂ψ
V ′

〈∫
d3v C

(`)
ii {Hnc

i1,0}
I3v3

||

B3

〉

ψ

, (24)

Πie
−1 =

nemcνei
Ze

〈
R2

(
1 +

eφnc
1

Te

)〉

ψ

(Ti − Te), (25)

Πie
0 = −M

2c

2Ze

〈∫
d3v C

(`)
ii {H ie

i2,0}
I2v2

||

B2

〉

ψ

+
pemcνei
Zeni

〈
I2

B2

∫
d3v Hnc

i1

(
Mv2

||

Te
− 1

)〉

ψ

(26)

and

Πht = −M
2c

2Ze

〈∫
d3v C

(`)
ii {Hht

i2,0}
I2v2

||

B2

〉

ψ

− M2c

2Ze

〈∫
d3v Sht

I2v2
||

B2

〉

ψ

. (27)
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Recall that the subscript g indicates that R, ε and µ have been replaced by Rg, v
2/2

and v2
⊥/2B, and the subscript 0 that they have been replaced by r, v2/2 and v2

⊥/2B. In

Table 4 we summarize the size of all these contributions compared to the reference size

(B/Bp)δ
3
i piR|∇ψ|, and we write what they depend on. To obtain these dependences,

we use equations (4), (5), (6), (7), (12), (13) and (14). Most of the size estimates are

taken from [18], except for Πie
−1, Πie

0 and Πht that are trivially found from the results

here. We use ∆ud to denote a measure of the flux surface up-down asymmetry. It ranges

from zero for perfect up-down symmetry to one for extreme asymmetry. Notice that

for extreme up-down asymmetry, Πtb
−1 and Πnc

−1 clearly dominate. The contribution Πie
−1

is formally very large for qRνii/vti ∼ 1, but since the ion energy conservation equation

requires that (Ti − Te)/Ti ∼ (B/Bp)(vti/qRνii)δ
2
i

√
M/m, it will always be comparable

to (B/Bp)δ
3
i piR|∇ψ|.

3. Discussion

We finish by showing how this new formalism gives a plausible model for intrinsic

rotation. Until now, models have only considered the contribution Πtb
−1, with f tb

i and

φtb obtained by employing equations (7) and (13) without the terms that contain Hnc
i1 .

This is acceptable for RΩζ ∼ vti or high up-down asymmetry ∆ud ∼ 1. In this limit,

Πtb
−1(∂ψΩζ ,Ωζ) ' −νtb∂ψΩζ − ΓtbΩζ + Πtb

ud. To obtain this last expression we have

linearized around ∂ψΩζ = 0 and Ωζ = 0 for RΩζ/vti � 1. Here νtb is the turbulent

diffusivity, Γtb is the turbulent pinch of momentum and Πtb
ud ∼ ∆udδ

2
i piR|∇ψ| is the

value of Πtb
−1 at Ωζ = 0 and ∂ψΩζ = 0, and is zero for perfect up-down asymmetry when

equations (7) and (13) are solved without the terms that contain Hnc
i1 [26]. Notice then

that imposing 〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T ' Πtb = −νtb∂ψΩζ − ΓtbΩζ + Πtb

ud = 0 gives intrinsic

rotation only for up-down asymmetry or if momentum is pinched into the core from the

edge.

The complete model described in this article includes contributions that have

not been considered before. On the one hand, the gyrokinetic equations (7) and

(13) have new terms with Hnc
i1 , giving Πtb

−1 ' −νtb∂ψΩζ − ΓtbΩζ + Πtb
ud + Πtb

−1,0,

where Πtb
−1,0 ∼ (B/Bp)δ

3
i piR|∇ψ| is a new contribution due to the new terms in the

gyrokinetic equation. On the other hand, there are the new terms Πnc
−1, Πnc

0 , Πie
−1, Πie

0

and Πht. As we did for Πtb
−1, we can linearize Πnc

−1(∂ψΩζ) around ∂ψΩζ = 0 to find

Πnc
−1 ' −νnc∂ψΩζ + Πnc

ud + Πnc
−1,0, where Πnc

ud ∼ ∆ud(B/Bp)(qRνii/vti)δ
2
i piR|∇ψ| and

Πnc
−1,0 ∼ (B/Bp)

2(qRνii/vti)δ
3
i piR|∇ψ|. Combining all these results and imposing that

〈〈Rζ̂·
↔
Pi ·∇ψ〉ψ〉T = 0, we obtain

Ωζ = −
∫ ψa

ψ

dψ′ Πint

νtb + νnc

∣∣∣∣
ψ=ψ′

exp

(∫ ψ′

ψ

dψ′′ Γtb

νtb + νnc

∣∣∣∣
ψ=ψ′′

)

+Ωζ |ψ=ψa exp

(∫ ψa

ψ

dψ′ Γtb

νtb + νnc

∣∣∣∣
ψ=ψ′

)
, (28)
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where ψa is the poloidal flux at the edge, Ωζ |ψ=ψa is the rotation velocity in the edge

and Πint = Πtb
ud + Πtb

−1,0 + Πtb
0 + Πnc

ud + Πnc
−1,0 + Πnc

0 + Πie
−1 + Πie

0 + Πht. Notice that

this equation gives a rotation profile that depends on Πint that in turn depends on the

gradient of temperature and density, the geometry and the heating mechanism. The

typical size of the rotation is Ωζ ∼ (B/Bp)δivti/R for ∆ud<∼ (B/Bp)δi and Ωζ ∼ ∆udvti/R

for ∆ud>∼ (B/Bp)δi.

This new model for intrinsic rotation has been constructed such that the pinch

and the up-down symmetry drive, discovered in the high flow ordering, are naturally

included. By transforming to the frame rotating with Ωζ we have made this property

explicit.
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Appendix A. Equation for the distribution function in the rotating frame

In this Appendix we derive equations (4), (7) and (14) for the different pieces of the

ion distribution function, equations (5) and (12) for the different pieces of the electron

distribution function, and equations (6) and (13) for the different pieces of the potential.

These equations are valid in the frame rotating with angular velocity Ωζ , and we deduce

them from the results in [18], obtained in the laboratory frame.

In reference [18] we showed that in the limit Bp/B � 1, and neglecting the ion-

electron collisions and the effect of the heating, the ion distribution function is given by

fi(R, E, µ, t) = fMi(ψ(R), E, t) + F nc
i1 (ψ(R), θ(R), E, µ, t) + F nc

i2 (ψ(R), θ(R), E, µ, t) +

f tb
i (R, E, µ, t), where the size of these different pieces is F nc

i1 ∼ (B/Bp)δifMi, F
nc
i2 ∼

(B/Bp)
2δ2
i fMi and f tb

i = f tb
i1 + f tb

i2 , with f tb
i1 ∼ δifMi and f tb

i2 ∼ (B/Bp)δ
2
i fMi. The

equations for the different pieces were obtained from the gyrokinetic equation

∂fi
∂t

+ Ṙ · ∇Rfi + Ė
∂fi
∂E

= 〈Cii{fi}〉, (A.1)

where the time derivative Ṙ is

Ṙ = u′b̂(R) + v′
M − c

B
∇R〈φ〉 × b̂ (A.2)

and the time derivative Ė is

Ė = −Ze
M

[u′b̂(R) + v′
M ] · ∇R〈φ〉. (A.3)
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Here, u′ = ±
√

2(E − µB) is the gyrokinetic parallel velocity in the laboratory frame,

and

v′
M =

µ

Ωi
b̂ ×∇RB +

(u′)2

Ωi
b̂ × (b̂ · ∇Rb̂) (A.4)

are the ∇B and curvature drifts in the laboratory frame. Equations (19) and (20) of

[18] for F nc
i1 and equation (24) of [18] for F nc

i2 are obtained from the long wavelength

axisymmetric contributions to (A.1) of order δifMivti/a and (B/Bp)δ
2
i fMivti/a,

respectively. Equation (25) of [18] for F tb
i2 is also a long wavelength axisymmetric

component of (A.1). In particular, it is the contribution of order δ2
i fMivti/a that does

not become of order (B/Bp)δ
2
i fMiνii when the equation is orbit averaged. Equation (55)

of [18] for f tb
i is the sum of the short wavelength components of (A.1) of order δifMivti/a

and (B/Bp)δ
2
i fMivti/a.

In this article, we extend equation (A.1) to account for ion-electron collisions and

the effect of the different heating mechanisms. For this reason, we use

∂fi
∂t

+ Ṙ · ∇Rfi + Ė
∂fi
∂E

= 〈Cii{fi}〉 + 〈Cie{fi}〉 + Sht, (A.5)

where Cie{fi} ∼
√
m/Mνiifi is the ion-electron collision operator, treated in detail in

Appendix B. Moreover, we want to write the equation in the rotating frame, that is, we

need to use the new gyrokinetic variable ε = E − IΩζu
′/B. Thus, the new gyrokinetic

equation is

∂fi
∂t

+ Ṙ · ∇Rfi + ε̇
∂fi
∂ε

= 〈Cii{fi}〉 + 〈Cie{fi}〉 + Sht. (A.6)

The time derivative of the new gyrokinetic variable ε is

ε̇ = Ṙ · ∇Rε+ Ė
∂ε

∂E
. (A.7)

In Ṙ, using u′ = u+ IΩζ/B, with u = ±
√

2(ε− µB +R2Ω2
ζ/2), leads to

Ṙ = ub̂ +
IΩζ

B
b̂ + vM + vC − c

B
∇R〈φ〉 × b̂ +O

(
B2

B2
p

δ3
i vti

)
, (A.8)

with

vM =
µ

Ωi

b̂ ×∇RB +
u2

Ωi

b̂ × (b̂ · ∇Rb̂) (A.9)

the ∇B and curvature drifts in the rotating frame, and vC = (2uIΩζ/BΩi)b̂×(b̂ ·∇Rb̂)

the Coriolis drift. To obtain this expression for Ṙ we have used (u′)2 = u2 +2IΩζu/B+

O[(B/Bp)
2δ2
i v

2
ti] to write v′

M = vM + vC + O[(B2/B2
p)δ

3
i vti]. The usual result for the

Coriolis drift vC = (2uΩζ/Ωi)b̂ × [(∇RR × ζ̂) × b̂] can be recovered by realizing that

for Bp/B � 1, b̂ ' ζ̂, b̂ · ∇Rb̂ ' −∇RR/R and I/B ' R, giving

vC =
2IuΩζ

BΩi

b̂ × (b̂ · ∇Rb̂) ' 2uΩζ

Ωi

b̂ × [(∇RR× ζ̂) × b̂]. (A.10)
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In addition, using Ib̂/B = Rζ̂+b̂×∇ψ/B, φ = φ0+φ
nc
1 +φnc

2 +φtb, 〈φ0〉 = φ0(ψ(R), t)+

O(δ2
i Te/e), 〈φnc

1 〉 = φnc
1 (ψ(R), θ(R), t) +O[(B/Bp)δ

3
i Te/e] and 〈φnc

2 〉 = O[(B2/B2
p)δ

2
i vti],

we can simplify equation (A.8) to

Ṙ = ub̂ +RΩζ ζ̂ + vM − 1

niMΩi

∂pi
∂ψ

b̂ ×∇ψ + vC − c

B
∇Rφ

nc
1 × b̂

− c

B
∇R〈φtb〉 × b̂ +O

(
B2

B2
p

δ3
i vti

)
. (A.11)

The time derivative ε̇ in (A.7) can be written as

ε̇ = Ė − Iu′

B

∂Ωζ

∂ψ
Ṙ · ∇Rψ − ΩζṘ · ∇R

(
Iu′

B

)
− IΩζ

Bu′
Ė. (A.12)

To simplify this equation we use φ = φ0 + φnc
1 + φnc

2 + φtb, 〈φ0〉 = φ0(ψ(R), t) +

O(δ2
i Te/e), 〈φnc

1 〉 = φnc
1 (ψ(R), θ(R), t) +O[(B/Bp)δ

3
i Te/e], 〈φnc

2 〉 = φnc
2 (ψ(R), θ(R), t) +

O[(B2/B2
p)δ

4
i Te/e], u

′ = u+O[(B/Bp)δivti] and

Ṙ · ∇R

(
Iu′

B

)
= u′b̂ · ∇R

(
Iu′

B

)
+ v′

M · ∇R

(
Iu′

B

)
− c

B
(∇R〈φ〉 × b̂) · ∇R

(
Iu′

B

)

=
Ze

Mc
v′
M · ∇Rψ +

ZeI

MBu′
v′
M · ∇R〈φ〉 +O

(
Bp

B
δ2
i v

2
ti

)
. (A.13)

With these results, we obtain

ε̇ = −Ze
M

[ub̂(R) + vM + vC ] ·
(
− 1

Zeni

∂pi
∂ψ

∇Rψ + ∇Rφ
nc
1 + ∇Rφ

nc
2 + ∇R〈φtb〉

)

−Iu
B

∂Ωζ

∂ψ

(
vM − c

B
∇R〈φtb〉 × b̂

)
· ∇Rψ +O

(
δ2
i v

2
ti

a

)
. (A.14)

To obtain the result in (A.13), we have employed v′
M · ∇Rψ = u′b̂ · ∇R(Iu′/Ωi);

− c

B
(∇R〈φ〉 × b̂) · ∇R

(
Iu′

B

)
=

ZeI

MBu′

[
µ

Ωi

b̂ ×∇RB − (u′)2

Ωi

b̂ ×∇R ln

(
I

B

)]
· ∇R〈φ〉

=
ZeI

MBu′

[
µ

Ωi
b̂ ×∇RB +

(u′)2

Ωi
b̂ × (b̂ · ∇Rb̂)

]
· ∇R〈φ〉 +O

(
Bp

B
δiv

2
ti

)

=
ZeI

MBu′
v′
M · ∇R〈φ〉 +O

(
Bp

B
δiv

2
ti

)
, (A.15)

where we have used I/B = R+O[(B2
p/B

2)R] and b̂·∇Rb̂ = −∇RR/R+O[(Bp/B)R−1];

and

v′
M ·∇R

(
Iu′

B

)
=
u′

Ωi

[
∇R × (u′b̂) − u′b̂b̂ · ∇R × b̂

]
·∇R

(
Iu′

B

)
= O

(
B2
p

B2
δiv

2
ti

)
,(A.16)

where we have used b̂ · ∇R × b̂ ∼ (Bp/B)a−1, b̂ · ∇R(Iu′/B) ∼ Rvti/qR ∼
(Bp/B)(R/a)vti and ∇R × (u′b̂) · ∇R(Iu′/B) = ∇R · [u′b̂ × ∇R(Iu′/B)] = ∇R ·
[(Iu′/B)∇Rζ × ∇R(Iu′/B)] + ∇R · [(u′/B)(∇ζ × ∇ψ) × ∇R(Iu′/B)] = ∇R · {∇Rζ ×
∇R[I2(u′)2/2B2]} − ∂ζ [(u

′/R2B)∇ψ · ∇R(Iu′/B)] = 0.
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With equations (A.6), (A.11) and (A.14), we can now easily obtain equations (4),

(7) and (14) for Hnc
i1 , f tb

i , Hnc
i2 , Htb

i2 , H ie
i2 and Hht

i2 . To obtain (4), we take the long

wavelength axisymmetric contribution to (A.6) to order δifMivti/a, giving

ub̂ · ∇RH
nc
i1 + vM · ∇RfMi −

Ze

M

∂fMi

∂ε

(
ub̂ · ∇Rφ

nc
1 − 1

Zeni

∂pi
∂ψ

vM · ∇Rψ

)

= C
(`)
ii {Hnc

i1 }. (A.17)

This equation differs from equations (19) and (20) of [18], and gives a function Hnc
i1

different from the function F nc
i1 defined in [18]. The reason is that fMi(ψ(R), ε)+Hnc

i1 +

Hnc
i2 must be equal to the function fMi(ψ(R), E) + F nc

i1 + F nc
i2 defined in [18] to the

order of interest, but how the terms of first and second order in δi are assigned to one

or the other piece differs depending on the frame. For this reason, we have changed

the name of the functions. The final result in (4) is obtained from (A.17) by using

vM · ∇Rψ = ub̂ · ∇R(Iu/Ωi) for u = ±
√

2(ε− µB +R2Ω2
ζ/2) ' ±

√
2(ε− µB).

Equation (7) is the sum of the short wavelength contributions to (A.6) of order

δifMivti/a and (B/Bp)δ
2
i vti/a. The equation is almost straightforward if we apply the

same methodology as in [18]. Only two terms require some care. On the one hand,

the ion-electron collision operator that was not treated in [18] is now considered in

detail in Appendix B. On the other hand, in Ṙ there is a drift −(niMΩi)
−1∂ψpi(b̂ ×

∇ψ) that is not included in (7). To study the effect of the perpendicular drift

−(niMΩi)
−1∂ψpi(b̂ × ∇ψ), it is better to consider the local approximation. In the

local approximation, the length scale of the turbulence is so small that the background

quantities can be represented by their local value and their local derivative, i.e., the

drift −(niMΩi)
−1∂ψpi(b̂×∇ψ) is given by its value −(niMΩi)

−1∂ψpi(b̂×∇ψ)|ψ=ψ0 at

the point ψ = ψ0 around which we want to calculate the turbulent fluctuations and

the linear dependence −(ψ − ψ0)∂ψ[(niMΩi)
−1∂ψpi(b̂ × ∇ψ)]|ψ=ψ0 . The characteristic

scale of the turbulence is the ion gyroradius, giving ψ − ψ0 ∼ ρiRBp and −(ψ −
ψ0)∂ψ[(niMΩi)

−1∂ψpi(b̂ × ∇ψ)]|ψ=ψ0 ∼ δ2
i vti. Since we only need to keep terms up

to order (B/Bp)δ
2
i fMivti/a, −(ψ − ψ0)∂ψ[(niMΩi)

−1∂ψpi(b̂ × ∇ψ)]|ψ=ψ0 · ∇Rf
tb
i ∼

δ2
i fMivti/a is negligible. Only the constant drift −(niMΩi)

−1∂ψpi(b̂×∇ψ)|ψ=ψ0 remains.

A constant drift does not change the character of the short wavelength structures and

can be safely ignored.

Equation (14) is found from the long wavelength axisymmetric components of

(A.6) to order δ2
i fMivti/a. Note that to this order we have the time derivative

∂tfMi [18]. Using ∂tfMi = [n−1
i ∂tni + (Mε/Ti − 3/2)T−1

i ∂tTi]fMi and realizing that

∂tni =
∑

〈
∫
d3v Sα〉ψ and (3/2)∂t(niTi) =

∑
〈
∫
d3v SαMε〉ψ, where the summations

are over α = nc, tb, ie, ht, we find the final form in (14). The equations for

Hnc
i2 and Htb

i2 are obtained in the same way as equations (24) and (25) in [18], i.e.,

the equation for Hnc
i2 is the axisymmetric long wavelength component of (A.6) of

order (B/Bp)δ
2
i fMivti/a, and the equation for Htb

i2 is the axisymmetric long wavelength

component of order δ2
i fMivti/a that when it is orbit averaged does not reduce to a piece

of order (B/Bp)δ
2
i νiifMi. The equations for H ie

i2 and Hht
i2 where not considered in [18].
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The equation for H ie
i2 is the axisymmetric long wavelength contribution that includes

the ion-electron collision operator that is treated in detail in Appendix B. The equation

for Hht
i2 is the axisymmetric long wavelength contribution that has the source Sht.

The equations (5) and (12) for the electron distribution function in the rotating

frame are derived in the same way as the equations for the ion distribution function. The

only differences are that the Coriolis drift vC and the term in (A.14) that is proportional

to ∂ψΩζ are small by
√
m/M and hence negligible, and that we include the electric field

EA driven by the transformer, leading to a modified time derivative for the energy

ε̇ =
e

m
ub̂ · EA +

e

m
[ub̂(R) + vM ] ·

(
− 1

Zeni

∂pi
∂ψ

∇Rψ + ∇Rφ
nc
1 + ∇R〈φtb〉

)
. (A.18)

Finally, the equations for the different pieces of the electrostatic potential (6) and

(13) are easily deduced from the results in [18] by realizing that moving to a rotating

reference frame does not modify the quasineutrality equation.

Appendix B. Ion-electron collisions

In this Appendix we discuss how we treat the ion-electron collision operator, given by

Cie{fi, fe} = γie∇v ·
[∫

d3ve∇g∇gg ·
(
fe∇vfi −

M

m
fi∇vefe

)]
, (B.1)

where γie = 2πZ2e4 ln Λ/M2, g = v − ve and ∇g∇g = (g2
↔
I −gg)/g3. Both the ion

velocity, v, and the electron velocity, ve, are measured in the rotating frame.

We must write the ion-electron collision operator up to order
√
m/MνiiδifMi.

For the wavelengths of interest, between the minor radius a and the ion gyroradius,

fi(R, ε, µ, t) = fMi(ψ(R), ε, t) + Hnc
i1 (ψ(R), θ(R), ε, µ, t) + f tb

i (R, ε, µ, t) + . . . and

fe(R, ε, µ, t) = fMe(ψ(R), ε, t) + Hnc
e1 (ψ(R), θ(R), ε, µ, t) + f tb

e (R, ε, µ, t) + . . ., where

Hnc
e1 = (eφnc

1 /Te)fMe+O[(B/Bp)δefMe] and f tb
e = (eφtb/Te)fMe+O(δefMe). The electron

distribution function is then a Maxwell-Boltzmann response (eφ/Te)fMe ∼ δifMe plus

a correction of order δefMe ∼
√
m/MδifMe that is smaller by

√
m/M . Expanding

the ion distribution function around Rg = r + Ω−1
i v × b̂, v2/2 and v2

⊥/2B, we

obtain fi = fMi,0 + Hnc
i1,0 + htb

i , where htb
i = f tb

ig − [Ze(φtb − 〈φtb〉)/Ti]fMi,0. For the

electrons, since we are considering wavelengths larger than the electron gyroradius, it

is possible to expand around r, v2/2 and v2
⊥/2B, giving fe = fMe,0 +Hnc

e1,0 + htb
e , where

htb
e = f tb

e0 − Ω−1
e (v × b̂) · ∇f tb

e0 + [mc(v × b̂) · ∇φtb/BTe]fMe,0. Here, the subscript 0

in fMi,0, fMe,0, H
nc
i1,0, H

nc
e1,0 and f tb

e0 indicates that the variables R, ε and µ have been

replaced by r, v2/2 and v2
⊥/2B. The subscript g in f tb

ig indicates that R, ε and µ are

replaced by Rg = r + Ω−1
i v × b̂, v2/2 and v2

⊥/2. Using these expressions for fi and fe,

and the relation

∇g∇gg = ∇ve∇veve − v · ∇ve∇ve∇veve +O

(
m

M

1

vte

)
, (B.2)
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we find that

Cie{fi, fe} = −Mγie
Ti

∇v ·
[(

1 +
eφnc

1

Te
+
eφtb

Te

)
fMiv ·

∫
d3ve fMe∇ve∇veve

]

+γie∇v ·
[
(∇vH

nc
i1 + ∇vh

tb
i ) ·

∫
d3ve fMe∇ve∇veve

]

−Mγie
m

∇v ·
[
fMi

∫
d3ve∇ve∇veve · (∇veH

nc
e1 + ∇veh

tb
e )

]

−Mγie
Te

∇v ·
[(

1 +
eφnc

1

Te
+
eφtb

Te

)
fMiv ·

∫
d3ve fMe∇ve∇ve∇veve · ve

]

−Mγie
Te

∇v ·
[
(Hnc

i1 + htb
i )v ·

∫
d3ve fMe∇ve∇ve∇veve · ve

]

+O
(m
M
νiiδifMi

)
. (B.3)

Here we have used that ∇vefMe = −(mve/Te)fMe and ∇ve∇veve · ve = 0. Using

∇ve∇ve∇veve · ve = −∇ve∇veve and
∫
d3ve fMe∇ve∇veve = (2/3)

↔
I
∫
d3ve fMe/ve =

(2
√

2/3
√
π)ne

√
m/Te

↔
I , we find

Cie{fi, fe} =
nemνei
niM

(
1 +

eφnc
1

Te
+
eφtb

Te

)(
Te
Ti

− 1

)(
Mv2

Ti
− 3

)
fMi

+
nemνei
niM

∇v ·
[
Te
M

(∇vH
nc
i1 + ∇vh

tb
i ) + v(Hnc

i1 + htb
i )

]

− 1

pi
[Fnc

ei + Ftb
ei − nemνei(W

nc
i + Wtb

i )] · vfMi

+O
(m
M
νiiδifMi

)
. (B.4)

Here νei = (4
√

2π/3)Z2e4ni lnΛ/m1/2T
3/2
e is the electron-ion collision frequency, Fnc

ei

is the long wavelength axisymmetric friction force on electrons due to collisions with

ions, given in (18), Ftb
ei is the short wavelength turbulent friction force, given in (9),

Wnc
i = n−1

i b̂
∫
d3v Hnc

i1 v|| is the long wavelength axisymmetric ion average velocity in

the rotating frame, and Wtb
i = n−1

i

∫
d3v htb

i v is the short wavelength turbulent ion

average velocity.
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