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Abstract 

The simplest non-trivial model of transport across a magnetic island chain in the presence 

of collisionless streaming along the magnetic field is solved by a Wiener-Hopf procedure. The 

solution found is valid provided the boundary layer about the island separatrix is narrow 

compared to the island width. The result demonstrates that when this assumption is satisfied 

the flattened profile region is reduced by the boundary layer width. The calculation is similar 

to the recent work by Fitzpatrick [R. Fitzpatrick, Phys. Plasmas 2, 825 (1995)] but is carried 

out in the collisionless, rather than the collisional, limit of parallel transport, and determines 

the plasma parameters on the separatrix self-consistently. 
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I. Introduction 

The dynamics of magnetic islands in tokamaks is currently a topic of intense research. 

It was shown by Carrera, Hazeltine, and Kotschenreuther,' and by Qu and Calleq2 that 

perturbing the bootstrap current caused by an island tends to make the island grow further 

(if the magnetic shear is positive), thus providing a powerful drive for instability. More recent 

c a l ~ u l a t i o n s ~ ~ ~  have included the effect of the ion polarization drift, which was shown to be 

able to stabilize sufficiently narrow islands. However, islands whose initial width exceeds 

some threshold grow because of the bootstrap drive. Such a threshold appears to have been 

observed experimentally in the Tokamak Fusion Test Reactor (TFTR) .5 

An alternative explanation of the threshold has recently been proposed by Fitzpatrick,' 

and Gorelenkov and co -~orke r s ,~  who point out that the density and temperature profiles are 

not flattened across a sufficiently narrow island because of cross-field transport. The boot- 

strap current is therefore not significantly perturbed and the instability drive never appears. 

Fitzpatrick' also discussed the detection of magnetic islands by electron cyclotron emision 

and argued that a narrow island should be virtually undetectable because the electron tem- 

perature profile is not flattened over the island. In contrast, the earlier  calculation^^-^ consid- 

ered islands wide enough to cause complete flattening of the profiles by ignoring the details 

of the boundary layer about the island separatrix. . 

The transport properties associated with the plasma in the neighborhood of a magnetic 

island are important, especially as the nonlinear growth of magnetic islands poses a serious 

threat to the development of reactor relevant devices. Experiments are planned in a number 

of existing tokamaks to apply localized current drive and heating to control the growth of 

islands. 

'The purpose of the present paper is to clarify the nature of transport across a magnetic 
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island by solving a simplified kinetic equation in full island geometry. For simplicity we 

treat only the limit of large island width, in which the transport boundary layer surrounding 

the island separatrix is narrow in comparison with the island-a limit considered in all the 

aforementioned theoretical papers. Even this problem is mathematically non-trivial because 

the magnetic field lines change topology across the separatrix and because boundary data 

cannot be specified on the separatrix itself. 

Our calculation demonstrates the essential features of transport across a magnetic island, 

which enforce a certain structure on spatial gradients in the island vicinity. While the paper 

by Fitzpatrick' considers cross-field transport in the limit of collisional parallel transport, we 

are interested in the opposite, collisionless limit more relevant to high temperature plasmas. 

This limit was treated in the paper by Gorelenkov et u Z . , ~  who, however, did not solve the 

transport equation in the boundary layer. 

In Sec. 11, the model kinetic equation is presented and the formalism necessary for dealing 

with the island geometry is developed. In the following four sections, the boundary conditions 

are discussed and the equation is solved by a Wiener-Hopf t e c h n i q ~ e , ~ ~ ~  with the details of 

the factorization given in Sec. V and the results presented in Sec. VI. These results are 

summarized in the last section. 

11. Island coordinates 

We suppose that diffusion across flux surfaces competes on an equal footing with free 

streaming along the magnetic field. Guiding center drifts due to finite Larmor radius are 

neglected. Hence we study the kinetic equation 

where the 11 subscript refers to the direction of the magnetic field B, f is the distribution 

function and D is a diffusion coefficient. The diffusion is assumed to be caused by small-scale 
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plasma turbulence, and can be represented as in (1) if the characteristic time step in the 

random walk taken by a particle in the turbulent field is shorter than the transit time around 

the island. 

Diffusion is ordinarily a much slower process than parallel streaming; the two processes 

compete here only because the radial scale-length, w, of f-the scale-length for variation 

normal to the magnetic flux surfaces-is assumed to be exceptionally short in the region of 

interest. Thus we have the basic ordering 

where w, is the ion thermal speed and LII is the parallel scale length. This ordering is 

conventional for tokamak boundary layers, such as that arising near a bounding wall; here 

we apply it to  the neighborhood of a magnetic island separatrix. Thus we suppose LII to 

be comparable to  the island lengt h-the distance between island x-points-while the radial 

scale w is supposed much shorter than the island width W :  

'Toroidal curvature is not important for small W ,  so we can model the magnetic field 

using cylindrical coordinates (T ,  p, 2 ) :  

The z-axis gives the direction of the equilibrium field Bo, T corresponds to the minor radius of 

the torus and is the helical angle on which the pertubation depends. The field perturbation 

is introduced through its perturbed (helical) flux, measured by $J. 

Since the $ in (3) has the dimensions of length, and since it satisfies 
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we can use $ as a radial coordinate in the perturbed field. Since we assume the distribution 

to have helical symmetry, its natural coordinates are $ and s, 

where s measures distance along B, and where 

It follows in particular that, to lowest order in w / W ,  
1 

v - (DVf) 2 DIV$l2,,, a2f 

and our kinetic equation becomes 

where o = il is the sign of the parallel velocity and u = )u,l) its magnitude. We choose the 

perturbation $ to correspond to an rn = 2 magnetic island (for concreteness): 

( 5 )  -(AT2 1 $, (T ,P> = L, - w2 cos 2 p )  

Here L, is the shear length of the equilibrium field, W is the (half-) island width and 

Ar = T - a is the radial distance from the surface at T = a where islands are centered. Note 

that $ has the value W 2 / L s  on the island separatrix. The field-line trajectories are given 

by AT($, p),  where $ labels the contour and /? varies along it. It is convenient to introduce 

k($)  where 

Then we have 

AT($,/?) = h k w  Jm 
We see that the region inside the island (where p has a limited range) corresponds to IC < 1, 

with IC = 0 at the island magnetic axis and k = 1 at the separatrix. 
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In the next section we solve (4) by Fourier transformation in its radial variable. Here 

we note that in its present form (4) is not amenable to Fourier transformation because its 

coefficients are strong functions of radius. Although we assume, for simplicity, 

D = constant, 

the quantity V$ necessarily varies from its nominal value, $ /W,  to zero at  the island x- 

points. Hence we introduce new, dimensionless coordinates ($, s) --$ (x, 6) according to 

where the normalizing factor N is a slow function of $ that will be chosen presently. These 

variables yield the conveniently simple kinetic equation 

for any choice of N .  

We fix N by requiring 6 to have a natural periodicity outside the island: 

where the integral is performed at fixed $ over a distance of one island length. Using 

d -1 a v = F- + p--, 
dr a d o  

we find that 

Because a - ,311 >> W the second term is small and neglected for simplicity. Then, since 
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our periodicity condition becomes 

2aDN 
- d p A r  = 71 

U L ,  -n/2 

or, in view of (6), 
T U  L, 

4 f i a D W k E (  k2) 
N =  

where E is the complete elliptic integral of the second kind. Note that this quantity is finite 

for k + 1. 

Now (8) provides the angle variable (outside the island) 

in terms of the incomplete elliptic integral E(,f3, k-2) .  

Inside the island, (11) and (12) are meaningless, but we have a conventional prescription 

for 8. First define 4(p,+) according to 

and then use the identity 

kE(P, = E($, k 2 )  + ( k 2  - 1)F($, k2) 

whose right-hand side is meaningful inside the separatrix. Here F is the incomplete elliptic 

integral of the first kind. Thus, inside the island, 

where K is the complete elliptic integral of the first kind. 

While the range of is limited inside the island, (13) allows q5 to vary from -7r to 7r over 

one loop of an interior surface. It can be seen to follow from (14) that 8 also has the range 

-7r + 7r. Note that both angles remain well-defined at the island separatrix, except at the 
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endpoints where both suffer logarthmic singularity. Indeed, the definition of 0 given by (12) 

and (14) makes that function fully continuous across the separatrix. It is not a conventional 

island angle, because of the (V$I2-factor in (7). Without that factor the angle variable would 

be singular on the island separatrix, where field lines become indefinitely long. 

The radial variable is found from (8), which, because of the square root, allows a free 

choice of signs. We choose x = 0 on the separatrix, and x > 0 inside it. The two separated 

exterior regions, corresponding to T > a and T < a, will both have x < 0. Hence x(+) is 

defined by 

(A) ' I 2  ( u W 3 )  1/2 11 k1I2dk 
x($) = 2  - 

aDL, IC($,)  [E(k-2)y2 
outside the island, and 

inside. 

These definitions do not distinguish the two regions outside the separatrix. In fact we 

do so not through x but instead using 8: we associate the range -T < 0 < 0 with the region 

('bt:i~w~~ the island chain (T < a),  and the range 0 < 8 < 7r with the upper region (T > a).  

This arrangement is faithful to the true island topology provided we imagine the line along 

19 =I 0 for x < 0 to be an impenetrable barrier. 

It is convenient at this point to re-examine our orderings. First note from (8) that the 

layer width in $ is measured by 

Alternatively we can estimate A+ from (4) with the result 

W L D  A+ - -/?. L S  

The two expressions agree since 
. aL, 

LII - w >> L,. 
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They are also consistent with the layer width measured in ordinary radius r ,  

as can be seen from (2): 

Figure 1 shows the resulting configuration. The island interior is labeled as region 11; the 

regions outside the separatrix, below and above the island chain, are labelled I and I11 

respectively. 

A key assumption in the consistency of these estimates is that the separatrix layer be 

thin compared to the island, w << W .  This requires an island of some size; in view of (17), 

we must have 

When (18) is satisfied we can assume Ar - W and k - 1 throughout the region of interest, 

including the asymptotic domains where x >> 1. 

111. Boundary conditions 

Of course the diffusion equation (9) is simple and conventional. What is distinctive about 

island transport is the nature of the boundary conditions, which change across the separatrix. 

Inside the separatrix, where x > 0, the distribution is periodic in 6 with period 27r; outside 

the separatrix there are two separated regions, corresponding to T > a and T < a, in which 

the period is T .  Referring to Fig. 1 we can state the periodicity conditions on j ( x , O )  as 

f(x, -;.) = f(x, 0-), in region I; 

f(x, -;.) = f(x, T )  in region 11; 

f(x, O+) = f(x, T ) ,  in region 111. 
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Outside the island chain (but in its vicinity) we suppose that the distribution uniformly 

increases in radius. It is the interruption of this constant gradient, by the island separatrices 

and interior, that we wish to study. For convenience we consider the f in our kinetic equation 

to be the difference between the actual distribution and its value, fo, at the island 0-point; 

this is permissible since (4) is unchanged by the addition of a (spatial) constant to f. Then, 

outside the island chain, f ( T ,  p )  is odd with respect to the variable T - T,  and f ( 2 ,  8) changes 

sign across the barrier separating regions 1 and 111: 

f(x, -e> = - f ( x ,  e ) ,  f o r  x < 0. (22) 

The change in boundary conditions across the separatrix forces the distribution to vary 

with 6 in a layer of width w surrounding the @-axis. Outside that layer we expect f to 

become constant on flux surfaces (independent of e ) ;  the diffusion equation then requires f 

to be linear in x for large IC. Hence the asymptotic boundary conditions are 

f(x, 6) -+ 0, x --f 00; 

Note that, when viewed on the macroscopic scale, the distribution appears discontinuous 

across the separatrix layer. It is this jump in f, 

Af = fIII - fr = -2co 

that drives the diffusion process being considered. 

A salient conclusion of our analysis will be that the coefficients co and c1 cannot be 

set independently by conditions far from the layer. Instead the diffusion equation with its 

boundary data enforce a linear relation between them. 
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IV. Fourier analysis 

The mixed boundary data forces us to consider half-range Fourier transforms, defined 

by integrals over positive or negative x. These functions have simple analyticity properties, 

allowing the full solution to be extracted from the boundary data by function theoretic 

argument. Our procedure, based on the Wiener-Hopf technique, has been used frequently 

in plasma kinetic theory; a previous study’’ of magnetic trapping in tokamaks is especially 

close to the present analysis. 

Thus we express the Fourier transform of f(z,  0) as 

F(P, 8) = FXP, 8) + f i ( P ,  8) 

with 

Here the subscripts refer to  analyticity properties: F, (4) is analytic in the upper-(lower-)half 

p - ~ l a n e . ~  Our differential equation (9) becomes 

It is convenient to express the solution in terms of Fo = F(p,O-,a).  Then we have, for 

8 < 0, 

(29) -up% F(P, Q,4 = Fo(P, 4 e  . 

(The dependence on will be left implicit when it is not essential to  the argument.) Since 

the form of F for positive 0 can be found from (29) and symmetry, our only remaining task 

is to determine F&), using the boundary data. 

11 



To simplify notation we introduce the abbreviations 

It can be seen that 

so it suffices to determine U and L. 

The large-z behavior of f, given by (23)-(25), fixes the small-p behavior of its transform; 

in particular we find that 

for p + 0. On the other hand U ( 0 )  is finite. 

We also observe that regularity of f(z,O) at x = 0 requires both U and L to decay at 

least as fast as I/p for large ( P I :  
1 L - u - -  
P 

Considering next the angular data, we note that (19)-(21) imply 

F ( p ,  -r) = L + u, 

F(P, 0-) = L + M ,  

F ( p ,  O+) = - L + M ,  

F ( ~ , T )  = -L  + U 
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We combine these results with (29) to infer 

L + M = ( L  + U)e-aup2, 

-L + u = (-L + M)e-T0p2. 

or, after eliminating M ,  

where 
TP2 V(p) = tanh-. 

2 

The procedure starting from (33) is con~entional.~ One supposes that V possesses a Wiener- 

Hopf factorization of the form 

where T/i (Vu) is analytic in the lower (upper) half p-plane, and where both factors are linear 

in p for large p :  

T/i - vu -p ,  p -00 .  (35) 

Now (33) implies 

WP)Vu(P) = OL(P)T/i(P). (36) 

The Wiener-Hopf argument then constructs a function A(p) that is defined by the left-hand 

side of (36) in the upper half p-plane, and by its right-hand side in the lower half. Then 

A(p) is analytic in the cut-plane; since (36) states that A is also continuous across the cut, 

we can infer (under mild mathematical restrictionss) that A(p) is an entire function. But 

note that (32) and (35) imply that A(p) approaches a constant, Cu, for JpJ + 00. Since the 

only entire function bounded by a constant at infinity is constant everywhere, we conclude 

that 
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Thus both functions U and L are determined from 'the single equation (33). 

It is now clear that, as we have remarked, the coefficients co and c1 of (24) cannot be 

independent: only a single free constant enters our expressions for U and L. From (31) we 

see that the relation between co and c1 is fixed by the form of & for small p .  Hence we need 

to !make the factorization explicit. 

V. Factorization 

We find the Wiener-Hopf factors Vu and & by a conventional procedure,' observing first 

that the function 
sinh(.irz2/2) 
cosh( nz2 /2 )  V ( z )  = 

has poles at  

and at 

z = f.\/ZnTiei3n/4, 

where n = 0, 1 , 2 , .  . .. It has zeroes at 

z = 

and. at 

z = =t&e23T/4. 

Note that the zero at the origin (n = 0) is second order. It follows that the function 
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is analytic and nonvanishing in a neighborhood of the real-z axis. Within this neighborhood 

we construct the path C,, parallel to the real axis but displaced a short distance above it: 

in order to define 

It is clear that this function is analytic in the lower-half p-plane. Similarly we define 

where the path Cb is displaced a short distance below the real axis. Since Cauchy's theorem 

implies 

we have found the relation 

and it is straightforward to identify 

Notice that these functions have the asymptotic behavior anticipated in (35) .  

Recall that the asymptotic slope of the distribution near the layer is fixed by the behavior 

of &(p) for small p. Therefore we consider the Taylor expansion of &: 

Here 

1 dz 
2n-a c, z = - 1 -4'(z). (43) 
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From (39) we find 

so (43) yields 

22 2 2572 
q'(z)  = - + sinh5722 

dz ha sinhrz2 '  
q i ( O )  = -i - i 

It is shown elsewhere'' that 

d2 
= Jz (Jz - 1) 5(1/2) La sinhnz2 

where C denotes the Riemann zeta-function: <(1/2) 

(42) we have 

-1.46. Substituting these results into 

~ ( ( p )  = ie-q'(')p2 [I + iJz (h - I) ~ ( 1 / 2 ) p  + 0 ( p 2 ) ]  . 

It follows in particular that U m V/K is finite at p = 0, as required. 

We can also verify that the distribution becomes independent of 0 for large x. The point 

is that 
af -0 - = - 1 dpe-@"p2 F ( p )  , a0 27r 

(44) 

where p 2 F ,  unlike F itself, is regular for all real p .  Hence phase-mixing will make its inverse 

transform vanish for large x. 

VI:. Distribution function 

Having determined 

we could now in principle find the complete boundary layer distribution by inverse Fourier 

transformation. However the resulting integration problem would bring scant reward, since 

the details of layer structure have little observable effect. Hence we are content to point out 

salient features of f ( 2 , S ) .  
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Note first that (45) can be expressed as 

Thus, after straightforward manipulation using the explicit form of V ( p ) ,  we can write the 

Fourier transform of the distribution as 

We next evaluate C,. Equation (31) fixes the small-p behavior of & according to 

& ( p )  = s p 2  (1 + . 
C1 

Comparing this result to (44) we infer 

a = -2 = 4 (Jz - 1) 5(1/2) 
C1  

2 0.855, 

(47) 

(48) 

(49) 

and 

d , = - z - e  ''o - 4 1 w  . 
a 

To compute ~ ( 0 )  we let the contour C, approach the real axis and use the Plemelj formula 

to conclude 

Thus 

1 7 r  
2 2  

qL(0) = --log -. 

co = -i1.46c0. aC, = -i- &I2 
a a  

We expect the asymptotic distribution, CO, to be even in parallel velocity and therefore infer 

c+ = -c-. (50) 

With (50) in mind we return to (46) and note the symmetry F ( p ,  e,.) = F(p,  -8 - 7r! -a) ,  

which implies 
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This relation is consistent with the asymptotic boundary data. 

More interesting is the relation (48) between the distribution outside the layer and its 

slope. In a linear tearing mode, conditions inside the tearing layer determine the change in 

asymptotic slope of the field perturbation, d$/dx,  across it; the value of $ itself is continuous 

across the layer. The present, nonlinear description of the distribution function is similar, 

dififering only in that the distribution itself, and not just its slope, will appear discontinuous 

across the layer when viewed on the macroscopic scale. Thus macroscopic views of the upper 

and lower separatrices, insensitive to the boundary layer structure, would show a jump in 

the distribution: 

Af = - 2 ~ 0  

To characterize this jump we consider region I for definiteness; from (48), 

with 

Thus 
Af = 2cu (--) 1 a f  

,I 

Recalling that l / f i  = A$ we obtain the estimate 

(53)  

The estimate is not surprising, but note that it involves only the layer width w, rather than 

the much larger island width. 

The same macroscopic view will ascribe the value 

f s  = fo  + eo 
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to  the distribution function on the inner (region I) island separatrix. Here f o  denotes the 

value of the distribution on the island o-point-the locally constant distribution that was 

introduced to make f change sign across the island chain. It is consistent with our W >> w 

ordering to consider f a  a,s an experimentally measurable quantity. The slope of the distri- 

bution as it approaches the separatrix in region I, according to (52), is 

with a corresponding expression in region 111. Here, to lowest order in w / W ,  N can be 

replaced by its value at k = 1, 
T U L ,  

4 A a D W '  
N(1 )  = 

whence 

We observe in particular that the gradient is steepest for rapidly streaming (large u) particles. 

VII. Discussion 

This work demonstrates rigorously an unsurprising circumstance: at low collisionality, 

the change in the distribution function across an island chain occurs almost entirely in the 

thin boundary layer ,surrounding each separatrix. Therefore, as long as the boundary layer is 

small compared to the island width, the radial extent of the flattened profiles is proportional 

to  the island width, and the peak temperature and density that can be sustained in the 

core for given edge values is reduced accordingly. For example, Tore-Supra'' employs an 

ergodic divertor to widen the scrape-off layer (SOL) and thereby decreases the heat load 

on the divertor plates. To avoid reducing the peak temperature and density that can be 

sustained in the core, the width of the non-ergodic island chains adjacent t o  the SOL should 

be kept comparable to  or smaller than the boundary layer width about the island separatrix. 
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Similarly, islands generated by error or applied helical fields must be kept small to avoid 

reducing the on-axis density and temperature for given edge values. 

The present analysis of boundary-layer structure differs from a similar calculation by 

Fitzpatrick6 in two ways. First, we consider the collisionless, rather than the collisional, 

limit of transport along the field. Second, we do not impose boundary conditions on the 

separatrix a priori but determine the conditions self-consistently. Our procedure resolves 

details of boundary layer that affect the stability of islands in the core. Indeed, the stability 

calculation by Wilson et a1.* shows that a significant fraction of the ion polarization current 

originates inside the boundary layer, whose structure is therefore expected to influence the 

final stability criterion in a more complete analysis-a topic we leave to future work. 
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FIGURE CAPTIONS 

FIG. 1. The original island geomentry (a) and its rearrangement (b). Note the regions I, 

below the island chain and outside its separatrix; 11, inside the separatrix; and 111, 

above the island chain and outside its separatrix. The two structures are physically 

equivalent provided the thick solid line in (b) is supposed to be impenetrable. 
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