95 research outputs found
Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy
AbstractThe impact of varying excitation densities (∼0.3 to ∼40 photons per molecule) on the ultrafast fluorescence dynamics of bacteriorhodopsin has been studied in a wide spectral range (630–900 nm). For low excitation densities, the fluorescence dynamics can be approximated biexponentially with time constants of <0.15 and ∼0.45 ps. The spectrum associated with the fastest time constant peaks at 650 nm, while the 0.45 ps component is most prominent at 750 nm. Superimposed on these kinetics is a shift of the fluorescence maximum with time (dynamic Stokes shift). Higher excitation densities alter the time constants and their amplitudes. These changes are assigned to multi-photon absorptions
Poisson-Furstenberg boundary and growth of groups
We study the Poisson-Furstenberg boundary of random walks on permutational
wreath products. We give a sufficient condition for a group to admit a
symmetric measure of finite first moment with non-trivial boundary, and show
that this criterion is useful to establish exponential word growth of groups.
We construct groups of exponential growth such that all finitely supported (not
necessarily symmetric, possibly degenerate) random walks on these groups have
trivial boundary. This gives a negative answer to a question of Kaimanovich and
Vershik.Comment: 24 page
B–N/B–H Transborylation: borane-catalysed nitrile hydroboration
The reduction of nitriles to primary amines is a useful transformation in organic synthesis, however, it often relies upon stoichiometric reagents or transition-metal catalysis. Herein, a borane-catalysed hydroboration of nitriles to give primary amines is reported. Good yields (48–95%) and chemoselectivity (e.g., ester, nitro, sulfone) were observed. DFT calculations and mechanistic studies support the proposal of a double B–N/B–H transborylation mechanism
Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).
Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future
Self-avoiding walks and connective constants
The connective constant of a quasi-transitive graph is the
asymptotic growth rate of the number of self-avoiding walks (SAWs) on from
a given starting vertex. We survey several aspects of the relationship between
the connective constant and the underlying graph .
We present upper and lower bounds for in terms of the
vertex-degree and girth of a transitive graph.
We discuss the question of whether for transitive
cubic graphs (where denotes the golden mean), and we introduce the
Fisher transformation for SAWs (that is, the replacement of vertices by
triangles).
We present strict inequalities for the connective constants
of transitive graphs , as varies.
As a consequence of the last, the connective constant of a Cayley
graph of a finitely generated group decreases strictly when a new relator is
added, and increases strictly when a non-trivial group element is declared to
be a further generator.
We describe so-called graph height functions within an account of
"bridges" for quasi-transitive graphs, and indicate that the bridge constant
equals the connective constant when the graph has a unimodular graph height
function.
A partial answer is given to the question of the locality of
connective constants, based around the existence of unimodular graph height
functions.
Examples are presented of Cayley graphs of finitely presented
groups that possess graph height functions (that are, in addition, harmonic and
unimodular), and that do not.
The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with
arXiv:1304.721
Kasha or state selective behavior in the photochemistry of ortho-nitrobenzaldehyde?
The photochemistry of ortho-nitrobenzaldehyde dissolved in tetrahydrofuran was studied by means of femtosecond UV/Vis and IR spectroscopy. Comparison was made of the spectral and temporal signatures for similar to 400 nm and similar to 260 nm excitation. The 400 nm excitation promotes NBA to its lowest excited singlet state of n pi* character whereas for 260 nm an upper excited state of pi pi* character is addressed. On the picosecond time scale, the molecule undergoes hydrogen transfer, yielding a ketene intermediate, internal conversion recovering the starting material, and intersystem crossing. Time constants and yields of these processes are virtually not affected by the excitation wavelength. For 400 nm excitation a similar to 100 fs decay component seen in the 260 nm experiment is absent, indicating that this component is due to a pi pi* -> n pi* internal conversion. In contrast to its formation, the decay of the ketene intermediate is influenced by the excitation wavelength. This can be attributed to different amounts of vibrational excitation
Selective Processing and Metabolism of Disease-Causing Mutant Prion Proteins
Prion diseases are fatal neurodegenerative disorders caused by aberrant metabolism of the cellular prion protein (PrPC). In genetic forms of these diseases, mutations in the globular C-terminal domain are hypothesized to favor the spontaneous generation of misfolded PrP conformers (including the transmissible PrPSc form) that trigger downstream pathways leading to neuronal death. A mechanistic understanding of these diseases therefore requires knowledge of the quality control pathways that recognize and degrade aberrant PrPs. Here, we present comparative analyses of the biosynthesis, trafficking, and metabolism of a panel of genetic disease-causing prion protein mutants in the C-terminal domain. Using quantitative imaging and biochemistry, we identify a misfolded subpopulation of each mutant PrP characterized by relative detergent insolubility, inaccessibility to the cell surface, and incomplete glycan modifications. The misfolded populations of mutant PrPs were neither recognized by ER quality control pathways nor routed to ER-associated degradation despite demonstrable misfolding in the ER. Instead, mutant PrPs trafficked to the Golgi, from where the misfolded subpopulation was selectively trafficked for degradation in acidic compartments. Surprisingly, selective re-routing was dependent not only on a mutant globular domain, but on an additional lysine-based motif in the highly conserved unstructured N-terminus. These results define a specific trafficking and degradation pathway shared by many disease-causing PrP mutants. As the acidic lysosomal environment has been implicated in facilitating the conversion of PrPC to PrPSc, our identification of a mutant-selective trafficking pathway to this compartment may provide a cell biological basis for spontaneous generation of PrPSc in familial prion disease
Loss of Octarepeats in Two Processed Prion Pseudogenes in the Red Squirrel, Sciurus vulgaris
The N-terminal region of the mammalian prion protein (PrP) contains an ‘octapeptide’ repeat which is involved in copper binding. This eight- or nine-residue peptide is repeated four to seven times, depending on the species, and polymorphisms in repeat number do occur. Alleles with three repeats are very rare in humans and goats, and deduced PrP sequences with two repeats have only been reported in two lemur species and in the red squirrel, Sciurus vulgaris. We here describe that the red squirrel two-repeat PrP sequence actually represents a retroposed pseudogene, and that an additional and older processed pseudogene with three repeats also occurs in this species as well as in ground squirrels. We argue that repeat numbers may tend to contract rather than expand in prion retropseudogenes, and that functional prion genes with two repeats may not be viable
Anti-Prion Activity of Brilliant Blue G
BACKGROUND: Prion diseases are fatal neurodegenerative disorders with no effective therapy currently available. Accumulating evidence has implicated over-activation of P2X7 ionotropic purinergic receptor (P2X7R) in the progression of neuronal loss in several neurodegenerative diseases. This has led to the speculation that simultaneous blockade of this receptor and prion replication can be an effective therapeutic strategy for prion diseases. We have focused on Brilliant Blue G (BBG), a well-known P2X7R antagonist, possessing a chemical structure expected to confer anti-prion activity and examined its inhibitory effect on the accumulation of pathogenic isoforms of prion protein (PrPres) in a cellular and a mouse model of prion disease in order to determine its therapeutic potential. PRINCIPAL FINDINGS: BBG prevented PrPres accumulation in infected MG20 microglial and N2a neural cells at 50% inhibitory concentrations of 14.6 and 3.2 µM, respectively. Administration of BBG in vivo also reduced PrPres accumulation in the brains of mice with prion disease. However, it did not appear to alleviate the disease progression compared to the vehicle-treated controls, implying a complex role of P2X7R on the neuronal degeneration in prion diseases. SIGNIFICANCE: These results provide novel insights into the pathophysiology of prion diseases and have important implications for the treatment
Genetic Cross-Interaction between APOE and PRNP in Sporadic Alzheimer's and Creutzfeldt-Jakob Diseases
Alzheimer's disease (AD) and Creutzfeldt-Jakob disease (CJD) represent two distinct clinical entities belonging to a wider group, generically named as conformational disorders that share common pathophysiologic mechanisms. It is well-established that the APOE ε4 allele and homozygosity at polymorphic codon 129 in the PRNP gene are the major genetic risk factors for AD and human prion diseases, respectively. However, the roles of PRNP in AD, and APOE in CJD are controversial. In this work, we investigated for the first time, APOE and PRNP genotypes simultaneously in 474 AD and 175 sporadic CJD (sCJD) patients compared to a common control population of 335 subjects. Differences in genotype distribution between patients and control subjects were studied by logistic regression analysis using age and gender as covariates. The effect size of risk association and synergy factors were calculated using the logistic odds ratio estimates. Our data confirmed that the presence of APOE ε4 allele is associated with a higher risk of developing AD, while homozygosity at PRNP gene constitutes a risk for sCJD. Opposite, we found no association for PRNP with AD, nor for APOE with sCJD. Interestingly, when AD and sCJD patients were stratified according to their respective main risk genes (APOE for AD, and PRNP for sCJD), we found statistically significant associations for the other gene in those strata at higher previous risk. Synergy factor analysis showed a synergistic age-dependent interaction between APOE and PRNP in both AD (SF = 3.59, p = 0.027), and sCJD (SF = 7.26, p = 0.005). We propose that this statistical epistasis can partially explain divergent data from different association studies. Moreover, these results suggest that the genetic interaction between APOE and PRNP may have a biological correlate that is indicative of shared neurodegenerative pathways involved in AD and sCJD
- …