Abstract

The connective constant μ(G)\mu(G) of a quasi-transitive graph GG is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on GG from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph GG. \bullet We present upper and lower bounds for μ\mu in terms of the vertex-degree and girth of a transitive graph. \bullet We discuss the question of whether μϕ\mu\ge\phi for transitive cubic graphs (where ϕ\phi denotes the golden mean), and we introduce the Fisher transformation for SAWs (that is, the replacement of vertices by triangles). \bullet We present strict inequalities for the connective constants μ(G)\mu(G) of transitive graphs GG, as GG varies. \bullet As a consequence of the last, the connective constant of a Cayley graph of a finitely generated group decreases strictly when a new relator is added, and increases strictly when a non-trivial group element is declared to be a further generator. \bullet We describe so-called graph height functions within an account of "bridges" for quasi-transitive graphs, and indicate that the bridge constant equals the connective constant when the graph has a unimodular graph height function. \bullet A partial answer is given to the question of the locality of connective constants, based around the existence of unimodular graph height functions. \bullet Examples are presented of Cayley graphs of finitely presented groups that possess graph height functions (that are, in addition, harmonic and unimodular), and that do not. \bullet The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with arXiv:1304.721

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021