385 research outputs found

    Understanding AGN-Host Connection in Partially Obscured Active Galactic Nuclei. Part I: The Nature of AGN+HII Composites

    Full text link
    The goal of our serial papers is to examine the evolutionary connection between AGN and star formation in its host galaxy in the partially obscured AGNs (i.e., Seyfert 1.8 and 1.9 galaxies). Taking advantage of these galaxies, the properties of both components can be studied together by direct measurements. In this paper, we focus on the broad-line composite galaxies (composite AGNs) which are located between the theoretical and empirical separation lines in the [NII]/Ha vs. [OIII]/Hb diagram. These galaxies are searched for from the composite galaxies provided by the SDSS DR4 MPA/JHU catalogs. After re-analyze the spectra, we perform a fine classification for the 85 composite AGNs in terms of the BPT diagrams. All the objects located below the three theoretical separation lines are associated with a young stellar population (<1Gyrs), while either a young or old stellar population is identified in the individual multiply-classified object. The multiply-classified objects with a very old stellar population are located in the LINER region in the [OI]/Ha vs. [OIII]/Hb diagram. We then consider the connection between AGN and star formation to derive the key results. The Eddington ratio inferred from the broad Ha emission, the age of the stellar population of AGN's host as assessed by D_n(4000), and the line ratio [OI]/Ha are found to be related with each other. These relations strongly support the evolutionary scenario in which AGNs evolve from high L/L_Edd state with soft spectrum to low L/L_Edd state with hard spectrum as young stellar population ages and fades. The significant correlation between the line ratio [OI]/Ha and D_n(4000) leads us to suggest that the line ratio could be used to trace the age of stellar population in type I AGNs.Comment: 39 pages, 11 figures, 1 table, accepted by Ap

    PAciFy Cough – A multicentre, double blind, placebo controlled, crossover trial of morphine sulfate for the treatment of PulmonAry Fibrosis Cough

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive disease that leads to lung scarring, Cough is reported by 85% of patients with IPF and can be a distressing symptom with a significant impact on patients’ quality of life. There are no proven effective therapies for IPF related cough. While morphine is frequently used as a palliative agent for breathlessness in IPF, its effects on cough have never been tested. PAciFy Cough is a multicenter, double-blind, placebo-controlled, crossover trial of morphine sulfate for the treatment of cough in IPF. Methods: We will recruit 44 subjects with IPF prospectively from three interstitial lung disease units in the UK, namely the Royal Brompton Hospital, Manchester University NHS Foundation Trust (MFT) and Aintree University Hospital NHS Foundation Trust. Patients will be randomized (1:1) to either placebo twice daily or morphine sulfate 5mg twice daily for 14 days. They will then crossover after a 7 day washout period. The primary endpoint is the percent change in daytime cough frequency (coughs per hour) from baseline as assessed by objective cough monitoring at Day 14 of treatment. Discussion: This multicentre, randomised trial will assess the effect of opioids on cough counts and cough associated quality of life in IPF subjects. If proven to be an effective intervention, it represents a readily available treatment for patients. Trial registration: The study was approved by the UK Medicines and Healthcare Regulatory Agency (Ref: CTA 21268/0224/001-0001 – EUDRACT 2019-003571-19 – Protocol Number RBH2019/001) on 08 April 2020, in compliance with the European Clinical Trials Directive and the Medicines for Human Use (Clinical Trials) Regulations 2004 and its subsequent amendments. The study was provided with ethical approval by the London Brent Research Ethics Committee (Ref: 20/LO/0368) on 21 May 2020 and is registered with clinicaltrials.gov (NCT04429516) on 12 June 2020, available at https://clinicaltrials.gov/ct2/show/NCT0442951

    A Magellan-IMACS-IFU Search for Dynamical Drivers of Nuclear Activity. I. Reduction Pipeline and Galaxy Catalog

    Full text link
    Using the Inamori Magellan Areal Camera and Spectrograph (IMACS) integral-field unit (IFU) on the 6.5m Magellan telescope, we have designed the first statistically significant investigation of the two-dimensional distribution and kinematics of ionized gas and stars in the central kiloparsec regions of a well-matched sample of Seyfert and inactive control galaxies selected from the Sloan Digital Sky Survey. The goals of the project are to use the fine spatial sampling (0.2 arcsec/pixel) and large wavelength coverage (4000-7000A) of the IMACS-IFU to search for dynamical triggers of nuclear activity in the central region where active galactic nucleus (AGN) activity and dynamical timescales become comparable, to identify and assess the impact of AGN-driven outflows on the host galaxy and to provide a definitive sample of local galaxy kinematics for comparison with future three-dimensional kinematic studies of high-redshift systems. In this paper, we provide the first detailed description of the procedure to reduce and calibrate data from the IMACS-IFU in `long mode' to obtain two-dimensional maps of the distribution and kinematics of ionized gas and stars. The sample selection criteria are presented, observing strategy described and resulting maps of the sample galaxies presented along with a description of the observed properties of each galaxy and the overall observed properties of the sample.Comment: 62 pages. 41 figures. 5 tables. Accepted for publication in ApJS. High-resolution version available at: http://www.astro.ljmu.ac.uk/~pbw/IMACS-IFU/IMACS-1-highRes.pd

    Are galaxies with AGN a transition population?

    Full text link
    We present the results of an analysis of a well-selected sample of galaxies with active and inactive galactic nuclei from the Sloan Digital Sky Survey, in the range 0.01 < z < 0.16. The SDSS galaxy catalogue was split into two classes of active galaxies, Type~2 AGN and composites, and one set of inactive, star-forming/passive galaxies. For each active galaxy, two inactive control galaxies were selected by matching redshift, absolute magnitude, inclination, and radius. The sample of inactive galaxies naturally divides into a red and a blue sequence, while the vast majority of AGN hosts occur along the red sequence. In terms of H-alpha equivalent width, the population of composite galaxies peaks in the valley between the two modes, suggesting a transition population. However, this effect is not observed in other properties such as colour-magnitude space, or colour-concentration plane. Active galaxies are seen to be generally bulge-dominated systems, but with enhanced H-alpha emission compared to inactive red-sequence galaxies. AGN and composites also occur in less dense environments than inactive red-sequence galaxies, implying that the fuelling of AGN is more restricted in high-density environments. These results are therefore inconsistent with theories in which AGN host galaxies are a `transition' population. We also introduce a systematic 3D spectroscopic imaging survey, to quantify and compare the gaseous and stellar kinematics of a well-selected, distance-limited sample of up to 20 nearby Seyfert galaxies, and 20 inactive control galaxies with well-matched optical properties. The survey aims to search for dynamical triggers of nuclear activity and address outstanding controversies in optical/IR imaging surveys.Comment: 12 pages, 8 figures, accepted by MNRA

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Open Science principles for accelerating trait-based science across the Tree of Life

    Get PDF
    Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges

    Vegetation dynamics and plant constraints: separating generalities and specifics

    Get PDF
    Vegetation dynamics is a stochastic process of species replacement after disturbance. It occurs because individual species are limited by general constraints and trade-offs. As these constraints and trade-offs are becoming better known, we understand more about the relationships between disturbance dynamics, species pools, and vegetation dynamics. This paper provides a summary of recent work on plant scaling and ecological trade-offs, and explores its implications for vegetation dynamics. Those aspects of succession that are predictable . given the local species complement . can be understood as consequences of these general patterns and constraints. Several are explored in this paper. The inherently stochastic nature of the process derives from the disturbance dynamics that forces it, from the sampling processes that are responsible for selecting potential invaders, and from the chance processes involved in species interactions. The dynamics of species that invade established communities is the least understood but potentially the most crucial aspect of vegetation dynamics. The relation of community invasion to gap creation and to scaling constraints is briefly discussed

    Defining strawberry shape uniformity using 3D imaging and genetic mapping

    Get PDF
    Strawberry shape uniformity is a complex trait, influenced by multiple genetic and environmental components. To complicate matters further, the phenotypic assessment of strawberry uniformity is confounded by the difficulty of quantifying geometric parameters ‘by eye’ and variation between assessors. An in-depth genetic analysis of strawberry uniformity has not been undertaken to date, due to the lack of accurate and objective data. Nonetheless, uniformity remains one of the most important fruit quality selection criteria for the development of a new variety. In this study, a 3D-imaging approach was developed to characterise berry shape uniformity. We show that circularity of the maximum circumference had the closest predictive relationship with the manual uniformity score. Combining five or six automated metrics provided the best predictive model, indicating that human assessment of uniformity is highly complex. Furthermore, visual assessment of strawberry fruit quality in a multi-parental QTL mapping population has allowed the identification of genetic components controlling uniformity. A “regular shape” QTL was identified and found to be associated with three uniformity metrics. The QTL was present across a wide array of germplasm, indicating a potential candidate for marker-assisted breeding, while the potential to implement genomic selection is explored. A greater understanding of berry uniformity has been achieved through the study of the relative impact of automated metrics on human perceived uniformity. Furthermore, the comprehensive definition of strawberry shape uniformity using 3D imaging tools has allowed precision phenotyping, which has improved the accuracy of trait quantification and unlocked the ability to accurately select for uniform berries
    corecore