279 research outputs found
Sperm parameters and epididymis function in transgenic rats overexpressing the Ca-2-binding protein regucalcin: a hidden role for Ca-2 in sperm maturation?
Sperm undergo maturation acquiring progressive motility and the ability to fertilize oocytes through exposure to the components of the epididymal fluid (EF). Although the establishment of a calcium (Ca-2) gradient along the epididymis has been described, its direct effects on epididymal function remain poorly explored. Regucalcin (RGN) is a Ca-2-binding protein, regulating the activity of Ca-2-channels and Ca-2-ATPase, for which a role in male reproductive function has been suggested. This study aimed at comparing the morphology, assessed by histological analysis, and function of epididymis, by analysis of sperm parameters, antioxidant potential and Ca-2 fluxes, between transgenic rats overexpressing RGN (Tg-RGN) and their wild-type littermates. Tg-RGN animals displayed an altered morphology of epididymis and lower sperm counts and motility. Tissue incubation with Ca-45(2) showed also that epididymis of Tg-RGN displayed a diminished rate of Ca-2-influx, indicating unbalanced Ca-2 concentrations in the epididymal lumen. Sperm viability and the frequency of normal sperm, determined by the one-step eosin-nigrosin staining technique and the Diff-Quik staining method, respectively, were higher in Tg-RGN. Moreover, sperm of Tg-RGN rats showed a diminished incidence of tail defects. Western blot analysis demonstrated the presence of RGN in EF as well as its higher expression in the corpus region. The results presented herein demonstrated the importance of maintaining Ca-2-levels in the epididymal lumen and suggest a role for RGN in sperm maturation. Overall, a new insight into the molecular mechanisms driving epididymal sperm maturation was obtained, which could be relevant to development of better approaches in male infertility treatment and contraception.Portuguese Foundation for Science and Technology (FCT) under Program COMPETE [PEst-C/SAU/UI0709/2011]; FCT; FCT fellowships [SFRH/BD/60945/2009, SRFH/BPD/80451/2011]info:eu-repo/semantics/publishedVersio
Partial Deletion of Chromosome 8 β-defensin Cluster Confers Sperm Dysfunction and Infertility in Male Mice
β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility
Mutations that affect the surface expression of TRPV6 are associated with the upregulation of serine proteases in the placenta of an infant
Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in an in frame stop codon (R(510)stop) that leads to a truncated, nonfunctional TRPV6 channel, and the second in a point mutation (G(660)R) that, surprisingly, does not affect the Ca(2+) permeability of TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child by coexpressing the TRPV6 G(660)R and R(510)stop mutants and combinations with wild type TRPV6. We show that both the G(660)R and R(510)stop mutant subunits are expressed and result in decreased calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an increase in the expression of proteases
Mutations that affect the surface expression of TRPV6 are associated with the upregulation of serine proteases in the placenta of an infant
Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in an in frame stop codon (R510stop) that leads to a truncated, nonfunctional TRPV6 channel, and the second in a point mutation (G660R) that, surprisingly, does not affect the Ca2+ permeability of TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child by coexpressing the TRPV6 G660R and R510stop mutants and combinations with wild type TRPV6. We show that both the G660R and R510stop mutant subunits are expressed and result in decreased calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an increase in the expression of proteases.</p
Implementing clinical trial data sharing requires training a new generation of biomedical researchers
Data sharing enhances the value of medical research and builds trust in clinical trials, but more biomedical researchers need to be trained in these approaches, which include meta-research, data science and ethical, legal and social issues
Mass calibration of distant SPT galaxy clusters through expanded weak-lensing follow-up observations with HST, VLT, & Gemini-South
Expanding from previous work, we present weak-lensing (WL) measurements for a total sample of 30 distant (zmedian = 0.93) massive galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) Survey, measuring galaxy shapes in Hubble Space Telescope (HST) Advanced Camera for Surveys images. We remove cluster members and preferentially select z 73 1.4 background galaxies via V - I colour, employing deep photometry from VLT/FORS2 and Gemini-South/GMOS. We apply revised calibrations for the WL shape measurements and the source redshift distribution to estimate the cluster masses. In combination with earlier Magellan/Megacam results for lower-redshifts clusters, we infer refined constraints on the scaling relation between the SZ detection significance and the cluster mass, in particular regarding its redshift evolution. The mass scale inferred from the WL data is lower by a factor (at our pivot redshift z = 0.6) compared to what would be needed to reconcile a flat Planck \u3bd\u39bCDM cosmology (in which the sum of the neutrino masses is a free parameter) with the observed SPT-SZ cluster counts. In order to sensitively test the level of (dis-)agreement between SPT clusters and Planck, further expanded WL follow-up samples are needed
The human penguin project: climate, social integration, and core body temperature
Social thermoregulation theory posits that modern human relationships are pleisiomorphically organized around body temperature regulation. In two studies (N = 1755) designed to test the principles from this theory, we used supervised machine learning to identify social and non-social factors that relate to core body temperature. This data-driven analysis found that complex social integration (CSI), defined as the number of high-contact roles one engages in, is a critical predictor of core body temperature. We further used a cross-validation approach to show that colder climates relate to higher levels of CSI, which in turn relates to higher CBT (when climates get colder). These results suggest that despite modern affordances for regulating body temperature, people still rely on social warmth to buffer their bodies against the cold.info:eu-repo/semantics/publishedVersio
Large Scale CW ECRH Systems : Some considerations
Electron Cyclotron Resonance Heating (ECRH) is a key component in the heating arsenal for the next step fusion devices like W7-X and ITER. These devices are equipped with superconducting coils and are designed to operate steady state. ECRH must thus operate in CW-mode with a large flexibility to comply with various physics demands such as plasma start-up, heating and current drive, as well as configurationand MHD - control. The request for many different sophisticated applications results in a growing complexity, which is in conflict with the request for high availability, reliability, and maintainability. ‘Advanced’ ECRH-systems must, therefore, comply with both the complex physics demands and operational robustness and reliability. The W7-X ECRH system is the first CW- facility of an ITER relevant size and is used as a test bed for advanced components. Proposals for future developments are presented together with improvements of gyrotrons, transmission components and launchers
Recommended from our members
Use of composite endpoints in early and intermediate age-related macular degeneration clinical trials - state-of-the-art and future directions
The slow progression of early AMD stages to advanced AMD requires the use of surrogate endpoints in clinical trials. The use of combined endpoints may allow for shorter and smaller trials due to increased precision. We performed a literature search for the use of composite endpoints as primary outcome measures in clinical studies of early AMD stages. PubMed was searched for composite endpoints used in early/intermediate AMD studies published during the last 10 years. A total of 673 articles of interest were identified. After reviewing abstracts and applicable full-text articles, 33 articles were eligible and thus included in the qualitative synthesis. The main composite endpoint categories were: Combined structural and functional endpoints, combined structural endpoints, combined functional endpoints and combined multi-categorical endpoints. The majority of the studies included binary composite endpoints. There was a lack of sensitivity analyses of different endpoints against accepted outcomes (i.e. progression) in the literature. Various composite outcome measures have been used but there is a lack of standardization. To date no agreement on the optimal approach to implement combined endpoints in clinical studies of early stages of AMD exists and no surrogate endpoints have been accepted for AMD progression
- …
