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Abstract. Electron Cyclotron Resonance Heating (ECRH) is a key component in the 
heating arsenal for the next step fusion devices like W7-X and ITER. These devices are 
equipped with superconducting coils and are designed to operate steady state. ECRH 
must thus operate in CW-mode with a large flexibility to comply with various physics 
demands such as plasma start-up, heating and current drive, as well as configuration- 
and MHD - control. The request for many different sophisticated applications results in 
a growing complexity, which is in conflict with the request for high availability, 
reliability, and maintainability. ‘Advanced’ ECRH-systems must, therefore, comply 
with both the complex physics demands and operational robustness and reliability. The 
W7-X ECRH system is the first CW- facility of an ITER relevant size and is used as a 
test bed for advanced components. Proposals for future developments are presented 
together with improvements of gyrotrons, transmission components and launchers.  

1 Introduction  
Localized and well controllable power deposition as well as simple remote wave launching and beam 
control is an attractive feature of Electron Cyclotron Resonance Heating (ECRH). The good 
theoretical understanding of the wave-particle interaction physics, which is benchmarked in many 
experiments, provides a good quantitative predictability [1]. ECRH complies with various physics 
demands such as controlled plasma start-up from the neutral gas, steady state plasma stability 
control, and performance optimization by plasma profile shaping using both the heating and current 
drive capability. Both, the W7-X Stellarator and the ITER Tokamak rely on powerful CW systems 
[2,3], which are similar in frequency (140 GHz, 10 MW, 1800 s for W7-X and 170 GHz, 24 MW, 
1000 s for ITER). Localized current drive (CD) is a key feature for the control of both, the MHD 
instabilities in Tokamaks and the magnetic configuration in Stellarators.  
 The request for many different sophisticated applications - some of them are vital for steady 
state plasma control - and the increasing power demand results in a growing complexity of the 
systems. This is in conflict with the request for high Reliability, Availability, Maintainability, and 
Inspectability (RAMI), which arise from DEMO demands. In the case, that reactor operation is 
based on continuous full power ECRH, the efficiency of every subcomponent has to be maximized 
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in order to reduce the recirculating power of the plant. The requirements would be significantly 
relaxed for reactor concepts, which do not rely on this demand and the ECRH-system can be 
optimized with respect to economic aspects. ‘Advanced’ ECRH-components must comply with both 
the complex physics demands and operational robustness. As present day ECRH-systems have an 
experimental rather than an industrial character, the achievement of acceptable RAMI standards may 
require improvements and, very likely, simplifications. The development of refined technological 
solutions such as advanced gyrotrons, fast high-power beam switches, power combiners [4], and 
remote-steering launchers must take both aspects into account. Main goals are to extend the 
operational margins of gyrotrons, to make more efficient use of the installed power, and reduce the 
requirement for port space. The W7-X ECRH system is the first CW facility of an ITER-relevant 
size and is used also as a test bed for such new components. Diplexers are versatile transmission 
components with the capability to replace mechanical switches, improve the efficiency for MHD-
control techniques, reduce the number of transmission lines and launchers, and share common 
antennas for ECRH and ECE diagnostics. Remote-steering launchers may experience a revival in 
view of DEMO, because front-steering launchers with their delicate steering mechanisms facing the 
burning plasma may not be acceptable. Advanced components for more reliable gyrotron operation 
are reported in chapter 2. Advanced transmission and launching concepts are discussed in chapter 3 
with focus on high-power diplexers and remote steering launchers.  

2 Sources  
The needs of W7-X and ITER were the main drivers for the development of CW gyrotrons at the 

MW power level with a frequency of 140 GHz (W7-X, 2nd Harmonic at 2.5 T) and 170 GHz (ITER, 
1st harmonic at 5.4 T). Prototypes of the ITER-gyrotrons were successfully developed in Japan and 
Russia [5,6]. In EU a more ambitious R&D aims at 2 MW power per unit [7]. The development of 
the W7-X gyrotrons was launched in 1998 in EU (THALES) and US (CPI). Both manufacturers 
demonstrated the specified 1 MW, CW performance in 2005 [8,9]. A contract for 7 series gyrotrons 
was then placed with THALES after completion of the first R&D-milestone in 2003, but only the 
first series tube, which was delivered in 2005, met the specified parameters. The next series 
gyrotrons failed to meet the full specifications, although no design changes were made. An ongoing 
R&D aiming at the improvement of internal and external gyrotron components to achieve robust 
industrial series production characterized the following phase. The following components saw a 
significant improvement since the prototype achievements in 2005: 

 
 a) collector sweeping to extend the power margin for the spent electron beam dump 
  b) isolation of the body voltage  

c) window cooling to replace water by oil to prevent long-term corrosion 
d) electron beam tunnel to suppress parasitic oscillations 
e) shaft coating to reduce stray radiation absorption 

   

A comparison of the TED SN3R gyrotron, which has none of the above mentioned design changes 
incorporated, and SN4R with improvements a) – d) built in, illustrates the achievements: SN3R is 
operating very reliably at a 700 kW power level (27 min tested), whereas operation at higher power 
leads to unstable RF emission, excitation of parasitic oscillations and interrupts. The TED SN4R 
gyrotron operates reliably and 1.02 MW were achieved with even some additional power margin. 
The pulse duration at > 0.9 MW had to be limited, however, to avoid overheating of the stainless 
steel shaft due to stray radiation absorption. The measured temperature rise of the shaft is about 7 
°C/min and thus the pulse duration was restricted to 1325 s corresponding to a shaft temperature of 
190° C (safety limit) at pulse end. As there is no access for active cooling in the narrow gap between 
the gyrotron shaft and the borehole of the SC- magnet, the inner surface of the shaft of the next 
series gyrotron SN6 was copper coated to reduce the stray radiation absorption and thus the 

04006-p.2

EPJ Web of Conferences



 
 
temperature increase. The temperature rise of the shaft was reduced to about 1 °C/min at an output 
power of 920 kW as expected. This gyrotron showed a robust performance similar to the previous 
SN4R, but with the capability to safely increase the pulse duration to the specified 1800 s as shown 
in Fig. 1 (left).  

 

Fig.1: Output power PRF, cathode voltage UC, beam current IC, efficiency η,  
and body voltage UB as a function of time for the TED gyrotron SN6 (left). Output power (triangles, squares) 

and efficiency (diamonds) as a function of beam current for the TED gyrotron SN4R. The limit for the collector 
loading with a standard vertical sweeping system (VSS) is indicated (right). 

The RF power is determined calorimetrically and corrected for the transmission losses through 8 
mirrors, the atmospheric attenuation over 18 m, the scattering of higher-order modes in the beam, 
and the reflection from the load (in total 7 %). The gyrotron showed no parasitic oscillations in the 
high-power regime in contrast to SN3R, which is attributed to the redesign of the beam tunnel.  

The efficiency of both, the SN4R and the SN6 series gyrotrons is lower than the specified 
minimum efficiency of 45 %, the reasons are subject to further research. The gyrotron collector is 
designed for a maximum loading of 1.2 MW with power distribution by vertical sweeping. The 
efficiency of SN6 is typically 40 % and the collector loading thus limits the output power to about 
800 kW. The collector loading-limit can be significantly increased by generating a smooth power 
distribution profile along the z-axis of the collector rather than a profile with strong power peaking at 
the turning points as generated by conventional vertical sweeping. The peak loading could be 
reduced to 60 %, by application of a combined transverse (50 Hz) and vertical (7 Hz) sweeping 
method [10] and thus a large margin with respect to collector loading was available. Both, the SN4 R 
and the SN6 gyrotrons were safely operated at a beam current of about 45 A, which is beyond the 
collector loading limit for the standard vertical collector sweep as seen from Fig.1 (right).  

The transition from prototype achievements, where in general the performance is pushed to the 
very limits, to reproducible series production of units with high reliability and availability is a 
process with a time scale comparable to the prototype R&D timescale itself. This statement holds for 
the W7-X gyrotrons and is supported by experience with earlier R&D. From the gyrotron tests we 
conclude also, that operation at, say, 30 % reduced performance, is helpful to arrive at an acceptable 
reliability. Note, that from the JAERI gyrotrons impressive reliability tests of the 1 MW ITER-
gyrotrons were reported for operation at reduced power of 800 kW [11].  

For next-step reactor-type devices RAMI aspects will become of crucial importance. A 
reduction of the diversity of gyrotron types and frequencies and concentration of the R&D efforts 
towards a ‘standard’ type of gyrotron may help to improve the situation. A 3 frequency (3f) standard 
gyrotron is proposed, which aims at a 1.5 MW design, but is operated at 1.0 – 1.2 MW for maximum 
reliability. The chosen triplet of frequencies should be resonant with a simple single-disk window at 
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multiples of λ/2. The W7-X (TED) and ASDEX Upgrade (AUG) (GYCOM) gyrotrons have 
diamond windows with a resonant thickness of 4λ/2 at 140 GHz. They are also transparent at 105 
GHz corresponding to 3λ/2 [10], and 175 GHz at 5 λ/2.  A possible set of modes, which are 
compatible with a generic cavity design is TE22,6 (104 GHz), TE28.8 (140 GHz), and TE34,10 (174 
GHz) [10,11], or TE17,6 (104.7 GHz) and TE22,8 (140 GHz) as built from GYCOM for AUG [6]. 
The development of a 2f gyrotron at JAEA is based on TE31,11 (170 GHz) and TE25.9 (137 GHz), 
both frequencies match the resonances of a single disk window with 1.853 mm thickness [12]. The 
chosen modes are both emitted from the mode converter at about the same inclination angle and can 
thus be coupled to the transmission waveguide by the same MOU. About 1.3 MW output power was 
achieved at both frequencies. Tuning the resonant magnetic field and adjusting the operation 
parameters can excite the different modes. An additional advantage can be taken from a generic 
magnet design, which should, under RAMI aspects, be cryogen-free and capable of handling the 
required magnetic configurations for all three modes and frequencies. As seen from table 1, where 
the ECRH-frequencies of some fusion devices are listed, the basic needs of these devices may be 
satisfied within some acceptable margin by gyrotrons generating a frequency triple of 175/140/105 
GHz or, anchored at the ITER-frequency, at 170/137/102 GHz.  The needs of DIII-D and TCV 
would not fit into this frame. 

Table 1. ECRH frequencies of a 3f gyrotron and the frequency demand of some fusion devices.  

 ITER W7-X JT60SA ASDEX- 
UPGRADE 

EAST KSTAR DIII-D TCV 

102/105  105 110 105   110/117.5 118 
137/140  140 138 140 140    
170/175 170     170   

The present day gyrotrons are designed as oscillators. In combination with interferometer types of 
high-power diplexers (see next section) it would be advantageous, however, to operate phase locked 
gyrotrons or gyro-amplifiers, which can be phase controlled by a master generator. Encouraging 
short-pulse results were obtained with a gyro-klystron operating at 30 GHz in TE5,3 mode with 15 
MW output power at 30 % efficiency [13]. 

3 Transmission and launching 
3.1 Four-port diplexers as TL-switches and beam combiners  

ECRH systems are composed of many units of typically 1-2 MW power, where each unit consists of 
a gyrotron, an attributed transmission line (TL) and launcher channel. The physics demands as 
outlined before, require rf-power switches to direct the source power to different TL’s and launchers. 
In the ITER baseline design, mechanical waveguide switches are foreseen in every TL to switch the 
power between the equatorial Heating- and CD-launcher and the upper launchers, which are 
dedicated to MHD-control. Mechanical switches are, however, slow and the rf-power has to be 
turned off during switching. The implementation of high power, four-port diplexers as non-
mechanical fast directional switches (FADIS) avoids these drawbacks and allows toggling of the 
power from a continuously operating gyrotron between two transmission lines or launchers. 
Switching is effected by either tuning the gyrotron frequency between slightly different frequencies 
f1 and f2 as sketched in Fig. 2 (left), or tuning the optical length of the resonator. High power 
experiments on fast switching up to 20 kHz were performed by a small frequency shift keying of the 
gyrotron(s) by modulation of the gun anode or the beam acceleration voltage [4]. Diplexers can also 
be used to combine the RF beams from two (or more) gyrotrons as sketched in Fig. 2 (middle) thus 
reducing the number of transmission lines and launchers [4]. Installing diplexers at a proper location 
in the TL’s, they can provide fast directional switching and, at the same time provide the option for a 
power upgrade by feeding an additional gyrotron to the second input (see Fig. 2 (left)). Note, that for 
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ITER a power upgrade in a later phase of the experiment is being discussed and would be possible 
without adding TL’s, ports and launchers. As the minimization of port space may become a major 
issue under DEMO-aspects, resonant diplexers are of interest also for plasma diagnostics because 
the same TL can be used for power transmission and sensitive ECE detection as sketched in Fig. 2 
(right).  

For the ECE-measurement in MHD-stabilization experiments, the “Line-of-Sight” scheme [14] 
exploits the gyrotron transmission line in the reverse direction, thus ensuring that the ECE observed 
originates from the deposition region of ECRH. Note, that the sophisticated fast calculation of 
plasma profiles and related ‘real-time’ equilibrium reconstruction for position feed back becomes 
obsolete for this type of observation and may simplify the MHD-control feed back system.  

  

Fig.2: Examples for diplexer application (schematic): FADIS (left), Beam Combiner (middle),  
and In-line ECE (right). 

The transmission characteristics of diplexers can be tailored according to the needs and several types 
were investigated in low power experiments [15]. Driven by the physics demands for advanced 
NTM-control experiments at AUG, a resonant diplexer with a narrow resonance of about 12 MHz 
FWHM and a free spectral range of 141 MHz was chosen. These design features are particularly 
well suited for FADIS, because of the steep resonant slope, for power combination, because two 
gyrotrons operating at slightly different frequency of the order of half the free spectral range can be 
combined to one output channel, and, last not least, for in-line ECE, because it provides good 
isolation from the power channel. The device was equipped with a feedback controlled movable 
mirror as tuning element [16], which matches the transmission characteristics to variations of the 
gyrotron frequency. Tuning the mirror by typically half a wavelength causes switching between the 
two outputs, which is interesting for applications in the ms-time scale, where no gyrotron-tuning is 
needed, or a variable splitting ratio of the power is envisaged. The resonant diplexer under 
investigation was installed into a straight corrugated waveguide section of the transmission system at 
AUG after successful high power tests using the W7-X ECRH. First preparatory experiments on 
MHD-control and in-line ECE have started [17,18].  

3.2 Launchers 

Launchers have to be optimized taking into account the gyrotron features: For standard gyrotons 
with fixed frequency the launchers must cope with the demands on power localization in the plasma 
(poloidal launch angle) and current drive (toroidal launch angle), or both. For step-tuneable 
gyrotrons, where the power deposition region is selected by the frequency, the launcher functionality 
can be restricted to toroidal (horizontal) motion only to adjust the current drive. Under RAMI aspects 
the simplification of the launcher mechanism is, however, counteracted by the gyrotron complexity 
in the latter case. In both, the W7-X and ITER devices, the ECRH power is fed to the plasma through 
quasi-optical front-steering launchers. These launchers provide a wide angular steering range and a 
narrow focusing of the individual RF beams. In ITER the wide steering range is required for MHD 
stabilization at q=1, 1.5, 2, whereas for W7-X the envisaged high-density H&CD scenarios with O-
X-B mode conversion heating are accessible only with strong oblique launch. The narrow power 
deposition is needed in ITER for MHD control, which is most efficient for complete power 
deposition within the narrow magnetic islands at the O-point. For W7-X the narrow deposition is 
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favourable, because the minor radius of the plasma is small (a = 0.55 m). The drawback of front 
steering is the complicated steering mechanism inside the vacuum vessel and a comparatively large 
coupling structure with the related port space. For the W7-X and the ITER Upper Launcher, a similar 
averaged power density (port through power/ port area) of 8-11 MWm-2 (baseline design) or twice 
this number assuming 2 MW/beam, is obtained. Under RAMI aspects it is expected, however, that a 
front steering launcher in the vicinity of the burning plasma is incompatible with DEMO demands. 
Thus the remote steering (RSL) concept may experience a revival, although some compromise with 
respect to steering range and focusing has to be made. The plasma facing, in-vessel structure is a 
simple corrugated square waveguide with no moving parts. The beam steering is performed out of 
the vessel. The average power density of such a simple structure would be about 100 MWm-2, i.e. 
one (small) port would be sufficient to transmit the complete H&CD power for DEMO. Possible 
improvement of RSLs are the extension of the steering range, development of low-loss, high power 
CW structures (2 MW), mode conserving mitre bends with arbitrary angle, integration of vacuum 
valves and barrier windows. For W7-X we have started conceptual design work on improved, CW-
compatible, RSLs for the high field side launch. The RSL consists of a basically square corrugated 
waveguide with cross-section about 50 x 50 mm, however, with some modification to enlarge the 
steering range [19, 20]. The integration between the coupling mirror situated in the main 
transmission system and the N-port of W7-X requires a mitre bend halfway along the waveguide. 
The waveguide will be evacuated, with the vacuum barrier window installed directly at the entrance 
of the waveguide. This avoids vignetting of the beam at larger steering angles; however, it requires 
that the vacuum valve be situated within the waveguide run. Extensive calculations have been 
performed to optimize the various parameters of the RSL. A corrugation profile with rounded edges 
and large aspect ratio has been calculated to minimize the ohmic loss in the wall. The investigations 
are expected to prepare a solid basis for the design of RSL’s for next step devices. 
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