294 research outputs found

    Securing tropical forest carbon: the contribution of protected areas to REDD

    Get PDF
    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important, although certainly not sufficient, component of an overall strategy for reducing emissions from deforestation and forest degradation (REDD

    Making Climate Data Relevant to Decision Making: The important details of Spatial and Temporal Downscaling

    Get PDF
    This paper examines potential regional-scale impacts of climate change on sustainability of irrigated agriculture, focusing on the western San Joaquin Valley in California. We consider potential changes in irrigation water demand and supply, and quantify impacts on the hydrologic system, soil and groundwater salinity with associated crop yield reductions. Our analysis is based on archived output from General Circulation Model (GCM) climate projections through 2100, which were downscaled to the 1,400 km2 study area. We account for uncertainty in GCM climate projections by considering two different GCM\u27s, each using three greenhouse gas emission scenarios. Significant uncertainty in projected precipitation creates large uncertainty in surface water supply, ranging from a decrease of 26% to an increase of 14% in 2080-2099. Changes in projected irrigation water demand ranged from a decrease of 13% to an increase of 3% at the end of the 21st century. Greatest demand reductions were computed for the dry and warm scenarios, because of increased land fallowing with corresponding decreased total crop water requirements. A decrease in seasonal crop ET by climate warming, despite an increase in evaporative demand, was attributed to faster crop development with increasing temperatures. Simulations of hydrologic response to climate-induced changes suggest that the salt-affected area will be slightly expanded. However, irrespective of climate change, salinity is expected to increase in downslope areas, thereby limiting crop production to mostly upslope areas of the simulation domain. Results show that increasing irrigation efficiency may be effective in controlling salinization, by reducing groundwater recharge and improving soil drainage, and in mitigating climate warming effects, by reducing the need for groundwater pumping to satisfy crop water requirements

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    the geomorphology of ceres

    Get PDF
    ### INTRODUCTION Observations of Ceres, the largest object in the asteroid belt, have suggested that the dwarf planet is a geologically differentiated body with a silicate core and an ice-rich mantle. Data acquired by the Dawn spacecraft were used to perform a three-dimensional characterization of the surface to determine if the geomorphology of Ceres is consistent with the models of an icy interior. ### RATIONALE Instruments on Dawn have collected data at a variety of resolutions, including both clear-filter and color images. Digital terrain models have been derived from stereo images. A preliminary 1:10 M scale geologic map of Ceres was constructed using images obtained during the Approach and Survey orbital phases of the mission. We used the map, along with higher-resolution imagery, to assess the geology of Ceres at the global scale, to identify geomorphic and structural features, and to determine the geologic processes that have affected Ceres globally. ### RESULTS Impact craters are the most prevalent geomorphic feature on Ceres, and several of the craters have fractured floors. Geomorphic analysis of the fracture patterns shows that they are similar to lunar Floor-Fractured Craters (FFCs), and an analysis of the depth-to-diameter ratios shows that they are anomalously shallow compared with average Ceres craters. Both of these factors are consistent with FFC floors being uplifted due to an intrusion of cryomagma. Kilometer-scale linear structures cross much of Ceres. Some of these structures are oriented radially to large craters and most likely formed due to impact processes. However, a set of linear structures present only on a topographically high region do not have any obvious relationship to impact craters. Geomorphic analysis suggests that they represent subsurface faults and might have formed due to crustal uplift by cryomagmatic intrusion. Domes identified across the Ceres surface present a wide range of sizes ( 100 km), basal shapes, and profiles. Whether a single formation mechanism is responsible for their formation is still an open question. Cryovolcanic extrusion is one plausible process for the larger domes, although most small mounds (<10-km diameter) are more likely to be impact debris. Differences in lobate flow morphology suggest that multiple emplacement processes have operated on Ceres, where three types of flows have been identified. Type 1 flows are morphologically similar to ice-cored flows on Earth and Mars. Type 2 flows are comparable to long-runout landslides. Type 3 flows morphologically resemble the fluidized ejecta blankets of rampart craters, which are hypothesized to form by impact into ice-rich ground. ### CONCLUSION The global trend of lobate flows suggests that differences in their geomorphology could be explained by variations in ice content and temperature at the near surface. Geomorphic and topographic analyses of the FFCs suggest that cryomagmatism is active on Ceres, whereas the large domes are possibly formed by extrusions of cryolava. Although spectroscopic analysis to date has identified water ice in only one location on Ceres, the identification of these potentially ice-related features suggests that there may be more ice within localized regions of Ceres' crust. ![Figure][1] Dawn high-altitude mapping orbit imagery (140 meters per pixel) of example morphologic features. ( A ) Occator crater; arrows point to floor fractures. ( B ) Linear structures, denoted by arrows. ( C ) A large dome at 42° N, 10° E, visible in the elevation map. ( D ) A small mound at 45.5° S, 295.7° E. ( E ) Type 1 lobate flow; arrows point to the flow front. Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust. [1]: pending:ye

    Predicting inpatient violence using an extended version of the Brøset-Violence-Checklist: instrument development and clinical application

    Get PDF
    BACKGROUND: Patient aggression is a common problem in acute psychiatric wards and calls for preventive measures. The timely use of preventive measures presupposes a preceded risk assessment. The Norwegian Brøset-Violence-Checklist (BVC) is one of the few instruments suited for short-time prediction of violence of psychiatric inpatients in routine care. Aims of our study were to improve the accuracy of the short-term prediction of violence in acute inpatient settings by combining the Brøset-Violence-Checklist (BVC) with an overall subjective clinical risk-assessment and to test the application of the combined measure in daily practice. METHOD: We conducted a prospective cohort study with two samples of newly admitted psychiatric patients for instrument development (219 patients) and clinical application (300 patients). Risk of physical attacks was assessed by combining the 6-item BVC and a 6-point score derived from a Visual Analog Scale. Incidents were registered with the Staff Observation of Aggression Scale-Revised SOAS-R. Test accuracy was described as the area under the receiver operating characteristic curve (AUC(ROC)). RESULTS: The AUC(ROC )of the new VAS-complemented BVC-version (BVC-VAS) was 0.95 in and 0.89 in the derivation and validation study respectively. CONCLUSION: The BVC-VAS is an easy to use and accurate instrument for systematic short-term prediction of violent attacks in acute psychiatric wards. The inclusion of the VAS-derived data did not change the accuracy of the original BVC

    The Role of Protein Kinase A Regulation of the E6 PDZ-Binding Domain during the Differentiation-Dependent Life Cycle of Human Papillomavirus Type 18

    Get PDF
    Human papillomavirus (HPV) E6 proteins of high-risk alpha types target a select group of PSD95/DLG1/ZO1 (PDZ) domain-containing proteins by using a C-terminal PDZ-binding motif (PBM), an interaction that can be negatively regulated by phosphorylation of the E6 PBM by protein kinase A (PKA). Here, we have mutated the canonical PKA recognition motif that partially overlaps with the E6 PBM in the HPV18 genome (E6153PKA) and compared the effect of this mutation on the HPVl8 life cycle in primary keratinocytes with the wild-type genome and with a second mutant genome that lacks the E6 PBM (E6ΔPDZ). Loss of PKA recognition of E6 was associated with increased growth of the genome-containing cells relative to cells carrying the wild-type genome, and upon stratification, a more hyperplastic phenotype, with an increase in the number of S-phase competent cells in the upper suprabasal layers, while the opposite was seen with the E6ΔPDZ genome. Moreover, the growth of wild-type genome-containing cells was sensitive to changes in PKA activity, and these changes were associated with increased phosphorylation of the E6 PBM. In marked contrast to E6ΔPDZ genomes, the E6153PKA mutation exhibited no deleterious effects on viral genome amplification or expression of late proteins. Our data suggest that the E6 PBM function is differentially regulated by phosphorylation in the HPV18 life cycle. We speculate that perturbation of protein kinase signaling pathways could lead to changes in E6 PBM function, which in turn could have a bearing on tumor promotion and progression

    Supervising the Supervisors—Procedural Training and Supervision in Internal Medicine Residency

    Get PDF
    At teaching hospitals, bedside procedures (paracentesis, thoracentesis, lumbar puncture, arthrocentesis and central venous catheter insertion) are performed by junior residents and supervised by senior peers. Residents’ perceptions about supervision or how often peer supervision produces unsafe clinical situations are unknown. To examine the experience and practice patterns of residents performing bedside procedures. Cross-sectional e-mail survey of 653 internal medicine (IM) residents at seven California teaching hospitals. Surveys asked questions in three areas: (1) resident experience performing procedures: numbers of procedures performed and whether they received other (e.g., simulator) training; (2) resident comfort performing and supervising procedures; (3) resident reports of their current level of supervision doing procedures, experience with complications as well as perceptions of factors that may have contributed to complications. Three hundred sixty-seven (56%) of the residents responded. Most PGY1 residents had performed fewer than five of any of the procedures, but most PGY-3 residents had performed at least ten by the end of their training. Resident comfort for each procedure increased with the number of procedures performed (p &lt; 0.001). Although residents reported that peer supervision happened often, they also reported high rates of supervising a procedure before feeling comfortable with proper technique. The majority of residents (64%) reported at least one complication and did not feel supervision would have prevented complications, even though many reported complications represented technique- or preparation-related problems. Residents report low levels of comfort and experience with procedures, and frequently report supervising prior to feeling comfortable. Our findings suggest a need to examine best practices for procedural supervision of trainees

    Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessing biomass is gaining increasing interest mainly for bioenergy, climate change research and mitigation activities, such as reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+). In response to these needs, a number of biomass/carbon maps have been recently produced using different approaches but the lack of comparable reference data limits their proper validation. The objectives of this study are to compare the available maps for Uganda and to understand the sources of variability in the estimation. Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset.</p> <p>Results</p> <p>The comparison of the biomass/carbon maps show strong disagreement between the products, with estimates of total aboveground biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution patterns. Compared to the reference map based on country-specific field data and a national Land Cover (LC) dataset (estimating 468 Tg), maps based on biome-average biomass values, such as the Intergovernmental Panel on Climate Change (IPCC) default values, and global LC datasets tend to strongly overestimate biomass availability of Uganda (ranging from 578 to 2201 Tg), while maps based on satellite data and regression models provide conservative estimates (ranging from 343 to 443 Tg). The comparison of the maps predictions with field data, upscaled to map resolution using LC data, is in accordance with the above findings. This study also demonstrates that the biomass estimates are primarily driven by the biomass reference data while the type of spatial maps used for their stratification has a smaller, but not negligible, impact. The differences in format, resolution and biomass definition used by the maps, as well as the fact that some datasets are not independent from the reference data to which they are compared, are considered in the interpretation of the results.</p> <p>Conclusions</p> <p>The strong disagreement between existing products and the large impact of biomass reference data on the estimates indicate that the first, critical step to improve the accuracy of the biomass maps consists of the collection of accurate biomass field data for all relevant vegetation types. However, detailed and accurate spatial datasets are crucial to obtain accurate estimates at specific locations.</p
    corecore