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Section 1: Introduction and Executive Summary 

Throughout the world, there is a major need for climate change science to inform on-the-ground 

adaptation planning. However, a major gap exists between the well-developed state of climate 

science and decision-makers preparing for a future climate. There is no shortage of scientific data 

that has been produced about climate change, but very little of this information is relevant to on-

the-ground decision making about these types of specific climate change impacts. This is due to 

different reasons: 1) the climate model information is at spatial and temporal scales too coarse a 

scale for most impact modeling (200-500 km and monthly averages) that often do not well 

represent local climate impacts; 2) General Circulation Models (GCMs, also known as global climate 

models) outputs focus mostly on changes to temperature and precipitation rather than specific 

impacts relevant to people; and 3) almost all of the climate change information available is stored in 

difficult to access formats (e.g. NetCDF Files).  

Climate models projecting future conditions need to better translated into packets of information 

useful for decision-makers. There is a wide variety of information needed depending on the type of 

issue being addressed and the level of technical ability at hand. Users of climate information will 

range from highly technical scientists and engineers running climate impact models to non-

technically trained local community members planning adaptation responses. However, there are 

similarities in what is need for virtually any decision-making situation: future climate information 

at the spatial and temporal scales relevant to specific climate impacts in local places throughout the 

world. People need to know more than just about changes to temperature and precipitation at a 

global scale, they need this information translated into impacts to agriculture, water supply, fire 

risk, human health, urban energy demand, and among others for specific places on-the-ground.  

Translating climate models to provide decision-support requires three main things for linking 

climate science to decision makers (Figure 1): 1) downscaling global climate models to finer spatial 

and temporal scales; 2) translating changes to temperature and precipitation into specific impacts 

to agriculture, hydrology, health, ecosystems, and urban energy demand, among others; 3) 

presentation and dissemination of these data to specific users throughout the world.  

The focus of this document is n how these three issues are being addressed to bring relevant 

climate information to adaptation and risk planning globally. 
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Figure 1: Climate data analysis and web-based visualization framework that links together: 1) downscaled 

climate projections developed by climate scientists; 2) the Climate Wizard analysis engine to query and 

analyze climate databases for geographic places; 3) impact models that translate climate into specific impacts 

in specific locations; 4) user interfaces that link users to the climate data through web-based mapping 

applications. 

 

Downscaling global climate models to finer spatial and temporal scales 

Global climate model information can be enhanced to better represent the conditions we know 

have occurred in specific places by using historically observed local climate information from 

weather stations. First, this local information allows for the future climate models to be downscaled 

from 200-500km (40,000 – 250,000 km2) to much finer scales to overcome the problem of these 

models being too coarse. Second, this information can be used to modify the future climate 

projections to better match observed local climate conditions—a process known as “bias-

correction”. Downscaling and bias-correcting at both a finer spatial and temporal resolution is 

needed to better represent the influence of topography and regional climate patterns on both the 

average and variation in climate, and to more accurately and completely assess future climate 

impacts. 
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Figure 2: Example of the monthly average 

climate during a calendar year (black line) 

compared to day-to-day variation showing 

peaks and valleys (extreme hot and cold 

days or wet and dry days during a single 

calendar year. 

Spatially downscaling and bias-correcting climate models is commonly conducted, however this is 

generally only done at monthly and annual time scales (e.g., Maurer et al. 2009; 

http://ClimateWizard.org). Downscaling and bias-correcting at a daily time scale is important for 

assessing climate impacts for a few reasons. First, it is generally not the average monthly condition 

that causes impacts, but rather the extreme peaks and 

valleys in the climate throughout the year and over 

decadal time-scales (Figure 2), or the extreme tail of 

climate events (i.e., infrequent events with sever 

impacts, Figure 3). Second, many climate driven impacts 

occur as a cumulative effect of what happens at the daily 

time scale—for example growing degree days are often 

used to determine agricultural suitability—and cannot 

be accurately estimated from monthly data. Third, most 

hydrologic, agricultural, and other impact models 

commonly require daily climate data in order to produce 

results relevant to real-world decision-making.  

A collaborative effort between The World Bank, The 

Nature Conservancy, Climate Central, and Santa Clara 

University has now produced the first standardized set 

of daily downscaled GCM projections that span the 

entire globe (See Section 2). This includes all terrestrial 

daily data archived in CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php)—the standard for 

raw GCM data distribution from the IPCC Fourth Assessment Report: nine different GCMs, some 

with multiple model runs, across three different greenhouse gas emissions scenarios (SRES A2, 

A1b, B1), totaling 53 future projections, all downscaled to a 0.5 degree resolution (~50 km) for the 

time periods of 1961-1999, 2046-2045, and 2071-2100. These data were downscaled using bias 

correction-spatial disaggregation (BCSD) methods adapted to a daily time scale from previous BCSD 

downscaling applied at a monthly time scale (Maurer et al. 2007). As part of downscaling it is 

important to bias-correct the climate model data to best represent the historic observation 

measured in the real world.  

Such a data set has yet to be developed for various reasons. For one, on the CMIP3 archive, most are 

available only at a monthly or annual time scale, although a sub-set of GCMs are achieved at a daily 

time scale. Second, downscaling methods have traditionally been developed for monthly data, and 

so monthly downscaled data are the default. Third, there have been computational power and 

storage space limitations to developing downscaled daily data.  

The daily downscaled outputs total 3.5 Terabytes. The availability of these data now to the scientific 

and practitioner communities around the world, represent a large step in bridging the gap between 

climate science and on-the-ground decision making. 

This data set forms the basis for developing climate change analysis metrics and analyses useful for 

supporting adaptation decision making and modeling climate change impacts that are summarized 

below and presented in sections 3-5. 

http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
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Figure 3: Hypothetical distributions of previous and new (future) climates showing change in the 

average temperature and how that translates to changes to extreme events (from 

http://SouthwestClimateChange.org, modified from IPCC 2007). Note that the extreme hot events 

shown in orange and red become disproportionately more likely to occur in the future than in the past, 

where as extreme cold events become disproportionately less likely to occur. 

 

Translating climate models into specific impacts 

Knowing how temperature and precipitation is projected to change in the future on average is not 

very useful to decision-makers planning for specific types of impacts to agriculture, water supply, 

fire risk, human health, urban energy demand, biodiversity, among many others. Rather, 

temperature and precipitation need to be used to create more useful climate metrics and impact 

modeling results that can be used directly to inform the development of climate adaptation 

responses. This can be done in at least a couple of ways: 1) calculating derivative climate metrics 

based on daily downscaled future climate projections that represent surrogates of different types of 

climate impacts; 2) running sector specific climate impacts models—such as crop yield models and 

river flow hydrologic models—that are driven by daily downscaled future climate projections.  
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First, a set of 22 “derivative climate metrics” that have been calculated from the daily downscaled 

climate are presented in Sections 3 and 4. These metrics include growing degree days, the hottest 

day of each year, and most amount of rain that falls in a 5-day period each year (See appendix 1 for 

complete list). Applications of these climate metrics and how they can be used to support climate 

preparedness planning are also discussed.  

Second, agricultural, hydrologic, among other impact models often require daily climate data, and 

the lack of readily available daily future climate projections has been a barrier to doing climate 

change impact assessments for specific places throughout the world. These daily downscaled data 

now provide a means for using these types to assess future climate change impacts. See Section 5 

for a discussion of integrating these data into impact modeling and case-study examples of how 

these data can be used for running agricultural and hydrological models. 

 

Data dissemination, analysis, and decision support tools 

It is not enough to simply develop climate data—in addition, there is a need to deliver these data to 

decision-makers, planners, engineers, and scientists in useful formats. This includes summaries of 

climate change information in the form of maps, graphs and tables for specific areas of interest 

throughout the world.  Building on the foundation of tools currently available—including the World 

Bank Climate Knowledge Portal (http://sdwebx.worldbank.org/climateportal/index.cfm) and 

Climate Wizard (http://ClimateWizard.org), Section 4 here presents how the derivative climate 

metrics presented here are being served to users through a website application.  

  

http://sdwebx.worldbank.org/climateportal/index.cfm
http://climatewizard.org/
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Section 2: Downscaling climate models to a daily time scale 
 

Different types of downscaling approaches 

 

There are two commonly used methods downscale future climate projections to finer spatial scales: 

dynamical downscaling (also referred to as “Regional Climate Models”) and statistical downscaling 

(sometimes called “empirical”).  

Dynamical Downscaling 

Dynamical downscaling generally uses a nested modeling approach where a regional climate model 

is run for a restricted area of the globe with boundary conditions forced by a global climate model. 

This method has the advantage that it is based on physical laws and can, in theory, better represent 

localized feedbacks in response to increased greenhouse gas concentrations and global warming. 

This downscaling method can produce a full suite of different output variables from the 

downscaling process because it is based on physical laws rather than statistical properties of 

historic climate. However, it is computationally very demanding, making it infeasible to run on a 

global scale or for many different climate models. In addition, since the dynamical downscaling is 

connected to global climate models, errors from those models will be propagated through the 

downscaling—“garbage-in garbage-out”. 

 

Nested Dynamical Downscaling 
 

Advantages Disadvantages 

 Based on physical laws, so should correctly 

represent local feedbacks in response to 

increasing GHG. 

 

 Produces a full suite of output variables. 

 

 Computationally very demanding 

 

 Generally preserves biases (errors) from the 

driving GCM—“garbage-in, garbage-out” 

 

 Most GCM simulations don’t save output 

needed for dynamical downscaling 

 

 Difficult to downscale a large number of 

future climate projections 

 

Statistical downscaling 

Statistical downscaling (also called empirical downscaling) is a commonly used method for 

downscaling because of the relative ease of application and the flexibility of the method for 

different applications. Because of their wide use, statistical downscaling methods have been well 

tested and validated in many environments. The principal disadvantage of statistical downscaling is 

its assumption that the derived statistical relationships between coarse-scale climate simulated by 

GCMs for historical periods and the fine-scale climate features observed in the past will be the same 
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in the future. Even with the natural variability of this relationship, this assumption has been found 

to be reasonable on average (for example, Maraun, 2012; Wood et al, 2004). 

 

 

Statistical/Empirical Downscaling 
 

Advantages Disadvantages 

 Computationally not very demanding 

 Does not require special output from the 

GCM 

 Can be applied to large ensembles of GCM 

simulations, allowing quantification of 

consensus. 

 Can include correction of GCM biases 

(errors) of GCM biases 

 Produces results for only a few variables  

(usually Temperature and Precipitation) 

 

 Accuracy limited by availability of gridded 

observations  (garbage-in-garbage-out) 

 

 Relationships derived from observations 

assumed to apply in the future, this is not 

true where local feedbacks important 

 

 Bias correction derived in historical period 

is assumed to apply in the future. 

 

 

Daily bias-corrected spatial disaggregation (BCSD) downscaling 

The daily timescale Bias-corrected Spatial Disaggregation (BCSD) downscaling method was selected 

for this dataset because it feasibly can downscale of multiple global climate models (GCMs) on a 

global domain. Dynamical downscaling methods can do this in principle but in practice are 

hampered by computational limitations. Other statistical/empirical downscaling methods that 

work on a daily scale (e.g. bias-corrected constructed analogues method; Maurer and Hidalgo, 

2008) cannot be applied meaningfully on a large scale, and certainly not on a global domain due to 

both data requirements and computational limitations.  BCSD has been applied over regional and 

continental domains in many different climates (for example, the Northeastern U.S.,, Hayhoe et al, 

2008; the Western U.S., Barnett et al.; 2008 Latin America Maurer et al., 2009; Africa, Beyene et al., 

2010). The BCSD method has also been applied to examine climate change impacts on diverse 

sectors including agriculture, hydropower and energy, water resources, wildfire, air quality and 

public health, and ecosystem responses (see for example Hayhoe et al, 2004, Cayan et al 2008 and 

references therein). The wide applicability of BCSD across different spatial and temporal scales and 

use in different impacts studies makes it unique among statistical downscaling methods, and 

appropriate for the current effort. 

 

Note that for the historical period the downscaled GCM output will statistically match the 

observations by construct. The sequencing of years, however, will not correspond to observations, 

since GCMs are not constrained to reproduce the timing of natural climate variations, such as El 
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Niño-southern Oscillation. That is, on average the mean and variance of climate from the GCMs and 

observations for the historic baseline period will closely match, but any given year (e.g. 1979) will 

not necessarily match between the GCMs and the observations.  

 

 

Bias-corrected Spatial Disaggregation (BCSD) Downscaling 
 

Advantages Disadvantages 

 Produces results on a uniform spatial grid 

 

 Preserves long-term trends from the GCM 

 

 Allows GCM to simulate changes in 

variability 

 

 Can produce monthly or daily results 

 Results for projected temperature changes 

have no fine detail, due to a consequence of 

preserving trends from the GCM 

 

Daily downscaling method 

Daily precipitation, minimum temperature and maximum temperature were downscaled using the 

BCSD method for 53 future climate projections from the World Climate Research Programme's 

(WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset. The 

projections were from 9 global climate models (GCMs) run under three greenhouse gas emissions 

scenarios (some GCMs had multiple model runs), which represents all daily GCM data available 

from the CMIP3 archives (see Table 1 for list a GCMs downscaled). GCMs with daily archived data 

were obtained from the CMIP3 archives, cleaned and checked for quality, completeness and 

consistency. While quality checking the data from the CMIP3 archives, the BCCR_BCM2_0 A2 and B1 

model run was found to be corrupt and unfixable, and thus was omitted from the list of models 

downscaled.  

 

Downscaled results were produced on a global domain (land areas only), with daily time resolution 

on a spatial grid of 0.5° in latitude by 0.5° in longitude. Because of limited availability of daily-

timescale GCM output, downscaled results were produced for three limited time windows: 1961-

1999 (referred to below as the historical reference period), 2046-2065, and 2081-2100. 

 

  



 

 
 

G u i d a n c e  f o r  D a i l y  D o w n s c a l e d  C l i m a t e  P r o j e c t i o n s  
 

Page 12 

Table 1: The following list of GCMs, scenarios and model runs were obtained from the CMIP3 archives for the 

time periods 1961-1999, 2046-4065, and 2081-2100. 

 

    Scenario (# of runs) Native  Model 

Resolution  

(°lat x °lon) GCM Code Formal Name B1 A1B A2 

cccma_cgcm3_1 CGCM3.1 (T47) 3 3 3 3.75 x 3.75 

cnrm_cm3 CNRM-CM3 1 1 1 2.8125 x 2.8125 

gfdl_cm2_0 GFDL-CM2.0 1 1 1 2.0 x 2.5 

gfdl_cm2_1 GFDL-CM2.1 1 1 1 2.0 x 2.5 

ipsl_cm4 IPSL-CM4 1 1 1 
2.5 x 3.75 

miroc3_2_medres MIROC3.2 (medres) 2 2 2 2.8125 x 2.8125 

miub_echo_g ECHO-G 3 3 3 3.75 x 3.75 

mpi_echam5 ECHAM5/ MPI-OM 1 0 1 1.875 x 1.875 

mri_cgcm2_3_2a MRI-CGCM2.3.2 5 5 5 2.8125 x 2.8125 

  Total 18 17 18  

 

The downscaling method used was a daily-timescale variant of a method known as Bias 

Correction/Spatial Downscaling (BCSD) that has been widely applied to produce monthly 

downscaled quantities based upon monthly GCM results. The monthly version of the method is 

described by Wood et al. (2002 and 2004). Further documentation can be found online at 

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html). As with any 

statistical downscaling method, some assumption of stationarity is needed. For the technique used 

in this study it is assumed that the processes shaping the climate at the fine grid scale during the 

historical period will continue to govern local climate features in the future, which may not always 

be the case. Past work has shown that the statistical BCSD method as implemented here performs 

comparably to dynamical downscaling approaches, at least when assessing hydrologic impacts of 

climate change. 

 

A daily variant, which produced daily timescale downscaled results based upon daily timescale 

GCM results, is described by Abatzoglou and Brown (2011). This daily downscaling is not to be 

confused with temporal disaggregation, which produces daily values based upon monthly GCM 

results and some questionable assumptions. Here we used a daily variant of the BCSD that is similar 

to that of Abatzoglou and Brown (2011), but which was developed independently.   

 

The downscaling and bias-correction was done using historical observed daily gridded observations. 

The base meteorological data consists of daily time-series for the period of 1950 through 1999 of 

precipitation, maximum temperature and minimum temperature. Monthly station data from a 

variety of sources (including the Global Historical Climatology Network (GHCN) version 2 data) 

were compiled and gridded to a resolution of 0.5-degree over all global land areas. The daily 

variability of precipitation, maximum and minimum temperature was constructed using other 

global daily datasets, which were scaled to match the monthly values. See Table 2 below for more 

information and complete methods used. 

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html
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Table 2: Data sources to create the 1/2-degree gridded global meteorological data for 1950 through 1999 
(based on Maurer et al 2009). 
 

Description  Reference  Variable  Time Step  Period of Use  Application 

University of 
Delaware Climate 
Data 

Willmott and 
Matsuura (2001) 

Precip 
Monthly Time 

Series 
1950-1999 

To create monthly 
precipitation variability 

East Anglia 
Climatic Research 
Unit Climate Data 

New et al. (2000) and 
Mitchell et al. (2004) 

Tmax 
Tmin 

Monthly Time 
Series 

1950-1999 
To create monthly 
precipitation variability 

University of 
Washington 
Gauge Catch 
Corrections 

Adam and Lettenmaier 
(2003) 

Precip 
Monthly 

Climatology 
1950-1999 

To apply the montly 
precipitation time series 
to correct for systematic 
bias 

Princeton 
University 
corrections to 
NCEP/NCAR 
reanalysis 

Sheffield et al. (2006) 
Precip 
Tmax 
Tmin 

Daily Time 
Series 

1950-1995 

To create daily variability 
by rescaling these data to 
match the monthly 
variability of the above 
time series 

University of 
Washington 
stochastically-
generated climate 
data 

Nijssen et al. (2001) 
Precip 
Tmax 
Tmin 

Daily Time 
Series 

1996-1999 

To create daily variability 
by rescaling these data to 
match the monthly 
variability of the above 
time series 

 

Bias-correction 

The bias correction step is performed independently for each day of the year (January 1 through 

December 31).  For each day, we based the bias correction on results from the reference period 

within +/- 15 days of the day in question. For example, for February 20 (the 51st day of the year), 

the bias correction is based upon results from days 51 - 15 = 36 through 51 + 15 = 66, for all 40 

years in the reference period (i.e. a total of 40*31 days). That is, the bias correction for February 20 

is determined by comparing reference period results from days 36 through 66 in the GCM to results 

from the same set of days in observations.  Using these data, the bias correction process itself is the 

same quantile mapping approach described in the references cited above. 

 

Trend Preservation 

A potential hazard of the bias correction process is that it cannot distinguish between year-to-year 

variability and an underlying trend (such as from increasing greenhouse gases)—these both create 

an increased range of values.  Thus, bias correction of data with an underlying trend would tend to 

artificially adjust variability downwards.  This would not only produce incorrect interannual 

variability in the bias-corrected results, but also tend to remove the underlying trend. To avoid 

these tendencies, we remove any underlying trend from the results before bias correction, and add 

it in again afterwards.  This ensures that the bias correction adjusts the interannual variability 
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properly, and that trends in the bias corrected results are the same as before bias correction.  

Because the downscaling step does not alter trends, either, this implies that trends in our BCSD 

results are the same as in the original GCM results.  This realizes an important principle, namely 

that the GCM is the best source of information about long-term trends; hence bias correction and 

downscaling should preserve those trends. 

 

The trend-determination process we used is influenced by the fact, noted above, that daily GCM 

data is unavailable for the periods 2001-2045 and 2066-2080. Hence any process that determines a 

trend in the 21st century results has to be robust to the reality that the first 44 years of data are 

missing.  

 

The trend preservation process involves the following steps: 

a. Calculate monthly means for all data; 

b. Calculate monthly climatologies for 1961-1999; i.e. the mean of all Januaries, the mean of all 

Februaries, etc; 

c. Calculate monthly anomalies relative to the climatologies described above; 

d. Calculate the 9-year running mean of anomalies for each month (this is the "trend"); 

e. Set the trend to zero during 1961-1999; 

f. Subtract the trend from each day in the month in question; 

g. Perform bias correction on detrended results; 

h. Add trend removed in step (f) to the detrended results. 

 

All climate models listed in Table 1 were downscaled to a 0.5 degree resolution and daily time scale 

for the years 1961-1999, 2046-2065 and 2081-2100.  

 

Quality Control of daily downscaled climate models 

Any complex calculation of the type described here is vulnerable to errors. These can originate from 

defective input data, poor choice of algorithm, or imperfect implementation of chosen algorithm.  

The volume of data involved prohibits “hand-checking” of all but a few representative results.  To 

minimize the possibility of errors, therefore, we designed and implemented a quality control 

process that checks key aspects of the results.  Of course, any process of this type only minimizes 

the likelihood of errors, and cannot guarantee error-free results. 

 

We summarize quality-checking steps that were performed on the daily downscaled climate 

products, for each of the general circulation models. All results were found to be within expected 

tolerances. See Appendix 1 for complete results from the quality control analysis. 

 

For daily minimum and maximum temperatures, the following were checked: 

1. The maximum value of Tmax and the minimum value of Tmin for both the 20th and 21st 

century periods (see table below for minimum and maximum values for both Tmin and 

Tmax). 

2. The number of cases where Tmin < -50 C, and Tmax > 50 C 
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3. Compared at each location the median values of bias-corrected (but not downscaled) model 

results to those in observations. By design, the median value for the bias-corrected data (for 

the 30-day moving window) should precisely agree with the 30-day moving window 

median value of the observed data.  

4. Compared at each location the overall trend before vs. after bias correction. The bias 

correction procedure is designed to preserve trends. 

 

For precipitation results, the following were checked: 

1. Negative values of precipitation.  

2. Daily precipitation values in excess of 400 mm/day. Such values are not necessarily 

erroneous, but they should not occur too often.  We calculated the rate of occurrence of such 

values in the 20th and 21st centuries. 

3.  Locations where precipitation occurs every day. 
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Section 3: Calculating derivative climate metrics 
  

Interpreting changes to daily climate change is challenging without running the type of 

sophisticated climate impact models described in Section 5. However, a variety of “derivative 

climate metrics” can be calculated from daily future climate projections that to provide insight and 

interpretation without running technical models. These derivative climate metrics allow for a more 

easy and intuitive way to interpret changes to daily climate data which can be interpreted as 

surrogates for impacts agriculture, water supply, flood risk, human health, energy demand and 

ecosystem resilience. These include metrics such as growing degree days (agriculture), the hottest 

day of any given year (human health), and the most amount of rain that falls in a five-day period 

each year (flood risk). Using the daily downscaled future climate projections described in Section 2 

above, 22 derivative statistics are described in this section and are available as part of the World 

Bank Climate Portal powered by Climate Wizard (described in Section 4).   

 

Methods for calculating derivative metrics 

To be consistent with past efforts calculating similar extreme climate statistics, we used the source 

code developed and distributed by the Max Plank Institute (MPI) for Meteorology.  The code is a set 

of commands wrapped into a package called the Climate Data Operators, Version 1.5.0 (March 

2011). All source code can be obtained at the MPI site https://code.zmaw.de/projects/cdo/files. 

 

We calculated a suite of 22 statistics using daily downscaled GCM output, with most of these 

statistics being widely used for many years in the climate community for characterizing extreme 

events (e.g., Easterling et al., 2003; Karl et al., 1999). Typical values, for historic periods, of many 

statistics are illustrated by Fritch et al (2002). 

 

In the tables above, the calculation of each statistic is described, and some more complete 

descriptions are in the literature (e.g., Schulzweida et al., 2011, von Engelen et al., 2008). Many of 

these statistics have been used to characterize observed historical climate and its changes 

(Alexander et al., 2006).   For most statistics the detailed calculation is obvious from the 

description, though some statistics require additional detail. 

 

Percentile-based threshold levels (statistics 7-10 for temperature in Table 3, and 5-6 for 

precipitation in Table 4) are calculated for 5-day moving windows through the annual cycle, based 

on the reference period of 1961-1990. In other words, for each calendar day for the base period, all 

of the days for each of the 30 years within 2 days of the current calendar day are compiled, and the 

10th (or 90th) percentile is determined. Then, for each month and year, the percentage of time that 

temperature falls below (or exceeds) the historic percentile is calculated. There are two important 

notes to this technique. First, the daily data are compared relative to varying thresholds throughout 

the year, and extreme events can be observed with equal probability throughout the year (Klein 

Tank and Konnen, 2003), so warm periods in the winter are compared to winter 90th percentile 



 

 
 

G u i d a n c e  f o r  D a i l y  D o w n s c a l e d  C l i m a t e  P r o j e c t i o n s  
 

Page 17 

Tmax, for example. Second, as in prior analyses (e.g., Frich et al., 2002), since exceedences would be 

few in number within any month, monthly values will be less meaningful than annual. 

 

For statistics based on values for multi-day periods (temperature statistics 11 and 15 in Table 3; 

precipitation statistics 2, 3 and 7 in Table 4), the meaningfulness of these statistics at the monthly 

level becomes compromised, because the length of the period being assessed (for example, 5 days) 

becomes large relative to the length of the period being assessed (e.g., a 30-day month). This would 

cause problems when, for instance, a 5-day dry period spans the 1st of a month, which would then 

be divided into two shorter dry periods which would not show up as a 5-day dry period. Thus, for 

these statistics, only annual values are included in our database. 

 

Heating and cooling degree days were calculated using a base temperature of 18 °C (65 °F) 

following the Encyclopedia of World Climatology (Oliver, 2005). Growing degree days were 

calculated using a base temperature of 10 °C with no upper threshold used. 
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Table 3: Temperature-based derivative climate metrics calculated from daily downscaled future climate 
projections. 

 

 

Long Name Variable Units Description Annual  Monthly  

Average Low 

Temperature 
tasmin C 

Monthly mean of daily minimum temperatures 
  

Average High 

Temperature 
tasmax C 

Monthly mean of daily maximum temperatures 
  

Hottest 

Temperature 
txx C 

Maximum  temperature for the month and year 
  

Coldest 

Temperature 
tnn C 

Minimum temperature for the month and year 
  

Hot Days 

Temperature 
tx90 C 

Maximum temperatures exceeded the hottest 

10% of all days per year 
  

Number of 

Frost Days 
fd days 

Frost days (min temperature lower than 0°C) 
  

Number of 

Warm Days tx90p % 

Very warm days percent: percent of time that 

daily Tmax values exceed the reference period 

(1961-1990) 90th percentile Tmax 

  

Number of 

Cold Days tx10p % 

Very cold days percent: percent of time that 

daily Tmax values are below the reference 

period (1961-1990) 10th percentile Tmax 

  

Number of 

Warm Nights tn90p % 

Warm nights percent: percent of time that daily 

Tmin values exceed the reference period (1961-

1990) 90th percentile Tmin 

  

Number of 

Cold Nights tn10p % 

Cold nights percent: percent of time that daily 

Tmin values are below the reference period 

(1961-1990) 10th percentile Tmin  

  

Heat Wave 

Duration 

Index hwdi days 

Heat wave duration index, number of days per 

year within intervals of at least 6 days of 

Tmax>(5C+Tmax normal for historic period). 

Normal Tmax for historic period is a 5-day 

running mean 

  

Growing 

Degree Days 
gd10 days 

Growing degree days, for Tavg, sum of degrees 

> 10C for each day, but month and year 
  

Heating 

Degree Days 
hd18 days 

Heating degree days, calculated with 18C base 

temperature, by month and year 
  

Cooling 

Degree Days 
cd18 days 

Cooling degree days, calculated with 18C base 

temperature, by month and year 
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Table 4: Precipitation-based derivative climate metrics calculated from daily downscaled future climate 
projections. 

 

Long Name Variable Units Description Annual Monthly  

Total 

Precipitation 
pr mm 

Total precipitation for the month and year 
  

Consecutive 

Dry Days 
cdd days 

largest number of consecutive dry days 

(with daily pr<1mm) per year 
  

Number of 

Dry Periods 
cdd5 days 

number of consecutive dry day periods of 

length > 5 days, per year 
  

Number of 

Wet Days 
r02 days 

Number of wet days (with precipitation > 

0.2mm/day), per month and year 
  

Wet Days r90p % 

Percent of wet days per year with rainfall> 

90-percentile wet-day precipitation, where 

percentiles are based on ref period 1961-

1990. Only days with rainfall>1 mm are 

considered 'wet' 

  

Wet Day 

Rainfall 
r90ptot % 

Precipitation percent per year due to days 

with precipitation>90-percentile reference 

period precipitation 

  

5 Day 

Rainfall 
r5d mm 

Maximum 5-day precipitation total per year 
  

Daily 

Rainfall 
sdii mm/day 

Simple daily intensity index: the mean daily 

precipitation on 'wet' days (>1mm) 
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Derivative Climate Metric 

Applications 

 

To better understands the utility of these 

metrics, they have been classified by how they 

relate to specific real-world-applications, such 

as assessing crop productivity, water supply, 

flood risk, human health, energy demand, and 

ecosystem resilience. 

Crop productivity relies on many different 

climate factors including total precipitation, 

growing degree days, dry days, average low 

and high temperatures. 

Water supply is focused on three 

precipitation variables: total precipitation—

quantifying average water input into the 

system; and two measures of dryness and 

drought conditions—consecutive dry days 

and number of dry periods. 

Flood risk is driven by rainfall average, 

measures of wet day rainfall and short term 

maximum rainfall intensities. 

Human health focuses solely on temperature 

stress (hot and cold) to people: hottest and 

coldest single day temperature; number of 

warm days and cold nights; and the heat wave 

duration index. 

Energy demand incorporates heating and 

cooling demand using heating and cooling 

degree days. 

Ecosystem resilience to climate change is 

complex and so incorporates many different 

aspects including total precipitation, dry 

conditions, extreme hot and cold 

temperatures, and growing degree days.  

Application
Relevant Derivative 

Climate Metrics

Total Precipitation

Concecutive Dry Days

Number of Dry Periods

Number of Wet Days

Growing Degree Days

Heat Wave Duration Index

Number of Frost Days

Hottest Temperature

Coldest Temperature

Average Low Temperature

Average High Temperature

Total Precipitation

Concecutive Dry Days

Number of Dry Periods

Total Precipitation

Wet Days

Wet Day Rainfall

5 Day Rainfall

Daily Rainfall

Hottest Temperature

Coldest Temperature

Number of Warm Days

Number of Cold Nights

Heat Wave Duration Index

Heating Degree Days

Cooling Degree Days

Total Precipitation

Consecutive Dry Days

Number of Dry Periods

Average Low Temperature

Average High Temperature

Hottest Temperature

Coldest Temperature

Number of Frost Days

Growing Degree Days

Crop Productivity

Water Supply

Flood Risk

Ecosystem Resilience

Energy Demand

Human Health
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Quality Control of Derivative Statistics 

A comprehensive assessment across all GCMs was conducted to ensure all grid cells in the world fell 

within expected bounds for all derivative statistics. Appendix 1 shows that all data fall within the 

expected bounds for all derivative statistics. In addition, the derivative statistics products were spot 

checked for having values within the range of reasonable values, and were visually checked for any 

abnormal in spatial patterns. The derivative statistics were inspected for places where NA values 

should be 0; this occurred with some of the precipitation-based derivative statistics where no 

precipitation had fallen in a specific month historically. 

 

An evaluation of climate model performance relative to historic observations was conducted for 

each of the GCMs across the 22 derivative statistics. This analysis was based on the assumption that 

GCMs that predict historic climate that closely matches historic observations may be more effective 

at predicting future climate. First, the historic observed derivative statistics were calculated from 

the historic gridded temperature and precipitation time-series using the same methodology 

described above. We developed a spatial method using the unpaired Students t-test to quantify the 

agreement between the GCM modeled historic and observed historic conditions. The computer 

code was written in the statistical package R. 

 

The analysis was run for all GCM/scenario/model run/derivative statistics combinations, resulting 

in approximately 3500 maps showing the relative performance of each GCM to match the historic 

derivative statistic conditions. Values in the maps range from near-zero (historic GCM models 

significantly deviate from historic observations) to near-one (historic GCM models match historic 

observations nearly perfectly). These values can be used for weighting future GCM runs based on 

how well a GCM performed for the past (see section on Climate Model Weighted Ensembles).  

 

Looking across derivative statistics shows that some metrics are better modeled by the GCMs than 

others when compared with historically observed climate. Table 5 below provides a summary of 

which climate metrics are modeled better GCM performance on average across all GCMs for each 

derivative statistic. Statistics with higher values tend to be better represented by the GCMs better 

(red and orange colors). This measure of climate metric agreement with historic observations can 

also be mapped out to see where in the world specific derivative statistics perform better or worse. 
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Table 5: Average historic agreement of GCM with historic observations (p-value) globally among all 

grid cells (note not area corrected).  Higher values indicate better agreement between GCM and 

historic observations (red = very high agreement; orange = high agreement; yellow = moderate 

agreement; tan = poor agreement). Note that these p-values are not being used in the traditional 

sense of finding statistically significant differences between data sets, but rather as a measure of 

agreement between them—as thus higher values represent higher probability of similarity between 

the GCMs and observations, whereas lower values lower probability of similarity. 

 

Variable Ann. Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

tasmin   0.77 0.77 0.76 0.70 0.68 0.66 0.68 0.65 0.60 0.60 0.59 0.68 

tasmax   0.75 0.76 0.74 0.70 0.66 0.66 0.64 0.65 0.61 0.60 0.61 0.66 

txx 0.14 0.26 0.26 0.24 0.23 0.19 0.17 0.17 0.18 0.22 0.22 0.23 0.27 

tnn 0.20 0.21 0.22 0.21 0.23 0.22 0.20 0.24 0.19 0.20 0.21 0.19 0.18 

tx90 0.51                         

fd 0.63 0.73 0.56 0.68 0.71 0.65 0.68 0.75 0.68 0.68 0.65 0.70 0.69 

tx90p 0.59 0.64 0.64 0.63 0.63 0.63 0.60 0.61 0.61 0.62 0.61 0.63 0.63 

tx10p 0.63 0.68 0.69 0.68 0.68 0.68 0.67 0.67 0.66 0.68 0.68 0.68 0.67 

tn90p 0.51 0.63 0.63 0.62 0.62 0.61 0.60 0.59 0.59 0.59 0.59 0.60 0.61 

tn10p 0.62 0.67 0.70 0.69 0.67 0.68 0.69 0.66 0.68 0.69 0.69 0.69 0.67 

hwdi 0.17                         

gd10 0.61 0.77 0.69 0.67 0.66 0.52 0.62 0.60 0.60 0.56 0.56 0.67 0.74 

hd18 0.63 0.65 0.60 0.65 0.68 0.67 0.68 0.64 0.64 0.62 0.60 0.59 0.62 

cd18 0.65 0.83 0.78 0.79 0.71 0.59 0.60 0.63 0.58 0.60 0.66 0.77 0.81 

pr 0.80 0.71 0.67 0.69 0.67 0.66 0.65 0.65 0.65 0.64 0.64 0.66 0.68 

cdd 0.28                         

cdd5 0.26                         

r02 0.08 0.35 0.33 0.31 0.26 0.25 0.20 0.19 0.22 0.23 0.29 0.31 0.33 

r90p 0.48 0.51 0.51 0.51 0.50 0.50 0.52 0.52 0.50 0.50 0.51 0.52 0.52 

r90ptot 0.50 0.55 0.55 0.56 0.56 0.54 0.56 0.55 0.54 0.55 0.55 0.54 0.55 

r5d 0.31                         

sdii 0.08 0.35 0.35 0.33 0.29 0.29 0.26 0.25 0.24 0.28 0.31 0.32 0.37 
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Section 4: Climate change analysis and visualization 
 

There are different ways to assess climate change, and a set of climate change statistics is useful. 

Four statistics for analyzing patterns in climate are: average, departure (or anomaly/difference), p-

value, and recurrence interval. The first is a measure of the average climate for the future, and the 

last three are measures of the amount of change between the past and the future.  

Each of the four statistics can be analyzed both spatially at each grid cell, as well as aggregated over 

a given area of interest (e.g. river basin). This document describes how each of the four statistics is 

calculated both spatially and aggregated, and how to view and use the results of these calculations 

as part of the World Bank Climate Wizard Portal 

(http://ClimateKnowledgePortal.ClimateWizard.org). Below is a description of each type of 

analysis and maps with examples. 

 

Selection of Time period 

The downscaled data in this data set is for a historic baseline time period 1961-1999, for which is 

calculated for two future time periods: 1) 2046-2065 (most likely estimate for 2055); and 2) 2081-

2100 (most likely estimate for 2090). All statistics described 

use these time periods.  

 

Aggregated versus grid-based analysis 

There are two fundamentally different ways to spatial 

analyze climate change: aggregated for an entire area (e.g. 

country or watershed), and spatially resolved across a 

grid-surface for that area (i.e. grid-based). These two 

analyses can be useful for different purposes, and should be 

used in the context of the spatial variation described in the 

section above.  

The aggregated analysis is useful for summarizing climate 

change over an entire area as a single value. For every area 

of interest analyzed—e.g. the Nile River Basin—the 

statistics described above are calculated as averaged over 

the entire area to give an idea of how the regional area is 

changing on average. This allows for easier interpretation 

and for developing climate planning scenarios for that area. 

Table 6 shows an example from the Nile Basin.  

However, solely using aggregated analyses of climate change 

can be misleading if there are larger regional patterns in 

climate change. If the area being analyzed is greater than 

Figure 4: Map of change in annual 
precipitation by 2081-2100 for the Nile 
Basin. Blue colors represent increased 
precipitation, green colors no change, 
and yellow to red colors decreasing 
precipitation.  
 

http://climateknowledgeportal.climatewizard.org/
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approximately one large climate grid—approximately greater than 100,000 km2—the climate 

models may show spatial variation of climate change within that area, as they do for change in 

precipitation the Nile Basin in Figure 4.  

 

 

 
Table 6: This table shows the average non-spatial values averaged over the entire Eastern Nile River Basin 
between the periods 1961-1990 and 2081-2100. The Departure value represents the difference between the 
aggregate means: Past Average and Future Average. The p-value give the statistical confidence in the future 
change (p<0.05 is a significant change), and the recurrence interval relates the future average condition to the 
frequency of climate extremes in the past (e.g. what happened once every 10 years in the past is projected to 
every other year in the future. 

 

Different Types of Climate Change Analyses 

Summary of different types of climate analysis measurements 

 
Average: average climate value during future time period 
(does not represent change) 
 
Departure: amount of change between historic baseline 
average climate value and future average climate value 
 
p-value: Statistical significance of change between 
baseline average climate value and future average climate 
value 
 
Recurrence Interval: How much more often extreme 
events will occur in the future than occurred in the past. 
 
Each of the four statistics can be viewed as interactive maps (spatial) in the primary CWC interface. 
To switch between each statistic, click on one of the four radio buttons under Map Options on the 
left panel of the Climate Wizard interface: 
 
Any map being viewed can be downloaded in GIS format or as a graphical map image from the links 
under “Downloads”.  
 

Area

Future Time 

Period

Climate 

Variable Model

Emissions 

Scenario Month

Past 

Average 

(mm)

Future 

Average Departure P-value

Recurrence 

Interval

Eastern Nile Basin 2081 - 2100 pr cccma_cgcm3_1.1 a2 14 666 688 22 0.24 2.58

Eastern Nile Basin 2081 - 2100 pr cnrm_cm3.1 a2 14 678 712 34 0.28 2.82

Eastern Nile Basin 2081 - 2100 pr gfdl_cm2_0.1 a2 14 654 643 -11 0.63 2.07

Eastern Nile Basin 2081 - 2100 pr gfdl_cm2_1.1 a2 14 655 779 123 < 0.01 6.20

Eastern Nile Basin 2081 - 2100 pr ipsl_cm4.1 a2 14 690 696 6 0.88 2.58

Eastern Nile Basin 2081 - 2100 pr miroc3_2_medres.1 a2 14 673 920 247 <0.0001 15.50

Eastern Nile Basin 2081 - 2100 pr miub_echo_g.1 a2 14 670 864 194 <0.0001 31.00

Eastern Nile Basin 2081 - 2100 pr mpi_echam5.1 a2 14 673 855 183 <0.0001 31.00

Eastern Nile Basin 2081 - 2100 pr mri_cgcm2_3_2a.1 a2 14 671 735 64 <0.0001 3.10

Eastern Nile Basin 2081 - 2100 pr Ensemble average a2 14 670 766 96 10.76
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Average climate 

The mean of each climate variable is calculated across either monthly or annual time domains 
(user-specified) and across one of two user-specified future time periods (2046-2065 or 2081-
2100).  
 
Mean calculations are only performed within user-specified polygon boundaries (heretofore 
referred to as the “area”). The calculation can be expressed as: 
  

Spatial equation (map)                  ̅  {       }    

 
Non-spatial equation (table)        ̅        ̅   

 
where  ̅  and  ̅  (spatial and non-spatial means) are summarized across the time domain set,  , and 
pixel set,  . The non-spatial mean aggregates all pixels within the user-specific area, and therefore 
describes the area as a whole. 
 
A spatially resolved example is provided for the hottest day of the year across Africa and the Middle 
East comparing the average for 1961-1990 to the average for 2081-2100 (Figure 5). Note how 
much hotter the hottest day of the year is projected to be by 2081-2100. 
 
  
 

 
Figure 5: Projected average annual consecutive dry days in the Africa and Middle East World Bank regions 

for the period 1961-1990 (historic baseline emissions) and 2081-2100 (A2 emissions). The color of each pixel 

represents the total annual precipitation averaged over the entire time period. 

 

  

1961-1990 2081-2100 

Hottest Day of the Year 
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Departure change analysis 

 
The departure (or difference) of each climate variable is calculated as the difference between future 
and historic periods. The historic period is always 1961-1990 and the future period can be defined 
as either 2046-2065 or 2081-2100.  
 
 Spatial equation (map): 
 

    ̅     ̅    

  
Non-spatial equation (table): 

 
   ̅   ̅  

 
where    and   (spatial and non-spatial departures) are simply the differences of the future and 
past means,  ̅  and  ̅  respectively. The spatial departure,   , is calculated at every pixel,  , and the 
non-spatial departure,  , is calculated from the past and future means in the summary table. 
 
A spatial example (from Climate Wizard Website, http://ClimateWizardCustom.org/extremes) for 
change in Consecutive Dry Days in 2081-2100 for the Africa region (Figure 6) and change in 
precipitation for the Nile River Basin (Figure 4) 

 
 

Figure 6: Map of change in annual maximum temperature for the GFDL_cm2_0.1 climate model A2 emissions 

scenario for 2081-2100. 

http://climatewizardcustom.org/extremes
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P-value: statistical confidence in change 

 
The p-value describes the probability that the future projections are different than the past using 
Student’s t-test. Classical statistics generally interprets p-values of 0.10, 0.05, and 0.01 to be 
“marginally significant,” “significant,” and “highly significant,” respectively. A “significant” p-value 
means that there is 95% ([1 – 0.05] * 100%) certainty that the shift in the data did not occur at 
random. Therefore, the lowest p-values in the maps and tables can be interpreted as the strongest 
shifts in pattern from the historic climate to the projected future. The p-values in the maps and 
tables do NOT describe the certainty that the future climate will actually occur, as different models 
could project different degrees of change. Additionally, the Student’s t-test assumes that the 
distributions of the future and past sets are normal, which may not be the case depending on the 
climate variable (Figure 7). 

 
  
Figure 7:  The probability (p-value) that the difference between past and future annual precipitation is not 
random. Grey pixel values between 0.1 and 1 describe an “insignificant” change from past to future that could 
have occurred at random. Conversely, dark purple pixel values between 0 and 0.001 describe a “highly 
significant” change from past to future that has less than a 0.1% chance of occurring at random.  
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Future recurrence interval 

  
The recurrence interval statistic describes how often the future median climate variable would 
have been expected to happen in the past. In other words, answering the question “In our recent 
historic climate (e.g. 1961-1990), how often did we experience events that we expect to be 
commonplace in the future”. For example, a recurrence interval value of 10 means that events that 
we only saw once every 10 years during the recent past (1961-1990) will be expected to happen 
every other year in the future. 
 
 Spatial equation (for creating map): 
 

     
{    ( ̃   )}   

    
 

 
 

     {
                

⁄

              
⁄

 

  
Non-spatial equation (for creating table):  

 

    
{    ( ̅ ̃)} 

    
 

 
 

    {
              ⁄

            ⁄
 

 
where     is the future probability of occurrence;  ̃    is the median of the future set at each pixel,  ; 

  is the past set;    is the sample size of the past set; and     is the future recurrence interval. The 

non-spatial recurrence interval is calculated like the recurrence interval at each pixel in the spatial 
calculation, except that the climate variable is spatially averaged ( ̅ ) before finding the median 

across the future set ( ̅ ̃). The maximum recurrence interval possible is 31 because there are only 

30 years in the past set. If  ̃    or  ̅ ̃ are outside the range of values of the past set, a value of 100 is 

assigned. The value of 100 is arbitrary. It denotes a scenario where the median future event was not 
experienced within the 30-year historic period (i.e., a “novel” climate, Figure 8).  
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Figure 8: shows the average change in recurrence interval of the 2081-2100 median model for consecutive 
dry days: what historically occur once every 3-10 years during 1961-1990, is projected to occur every other 
year in the future.  Blue pixels denote increased occurrence of high precipitation events (i.e. future 
precipitation is greater in the future than the past precipitation) and yellow-red pixels denote recurrence 
intervals of low precipitation events (i.e. the future precipitation is less than the past median).  The darkest 
hues of blue or red describe future scenarios where the average year is future year is projected to experience 
fewer levels that never occurred during 1961-1990. 
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Ensemble Analysis 

Climate change analysis becomes more complex for the future than the past because there is not 

one time-series of climate, but rather many future projections from different GCMs run with a range 

of CO2 emissions scenarios (IPCC 2007b). It is important not to analyze only one GCM for any given 

emission scenario, but rather to use ensemble analysis to combine the analyses of multiple GCMs 

and quantify the range of possibilities for future climates under different emissions scenarios. 

There are many approaches for doing ensemble analysis ranging from simple averaging approaches 

to more complex and computationally intensive probability estimation approaches (Dettinger 

2006, Araujo and New 2007).  

 

Quantile ensembles 

The multiple climate model maps are combined together using a simple, yet informative non-

parametric quantile-rank approach that maps out the 0 (minimum), 20, 40, 50 (median), 60, 80, and 

100th (maximum) percentiles. The range of a climate variable across the different ensembles shows 

you the range in the climate models for that variable. 

Ensembles can be interpreted differently for temperature versus precipitation. For temperature, all 

models agree that mean temperatures will increase everywhere in the world, so the ensemble 

shows you different magnitudes of temperature increase. However for precipitation, all models 

often do not agree on the direction of change, much less the magnitude in either direction. 

Ensemble analysis can be used to understand the distribution of climate models, look for climate 

model agreement, and identify the range of future climate projections. A spatially-resolved example 

of an ensemble analysis is given for change in consecutive dry days by 2081-2100 under the A2 

emissions scenario (Figure 9 left) 

Climate model-weighted ensembles 

Ensembles of climate models weighted to incorporate information about how well each GCM 

related to the represented observed climate. For each climate variable, each climate model was 

compared to historic observations of climate to determine how well they matched in each grid cell 

globally. Then the climate models were averaged weighted by how well the model matched the 

historic observations. A spatially-resolved example of an ensemble analysis is given for change in 

consecutive dry days by 2081-2100 under the A2 emissions scenario (Figure 9 right). Note that 

there is not much difference between using the weighted ensemble as compared to the un-weighted 

ensemble (Figure 9). 
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Figure 9: Maps of ensemble average unweighted median of climate models and weighted ensemble average 

(weighted mean) for change in consecutive dry days in 2081-2100 (A2 Emission scenario). Note a great 

similarity among the patterns of change between the two methods for calculating ensemble. 

 

Looking at regional patterns versus single climate grid cell 

Assessing regional patterns in climate change in important for understanding if climate change is 

consistent for the area or if climate change varies regionally. Often climate change will have 

different patterns for different. For example, change in consecutive dry days over the Africa and 

Middle World Bank regions varies from large increases in the northern and southern parts to large 

decreases in Central and Sub-Saharan regions (see Figure 9). However, for analyses of smaller 

areas—such as the country of Mali in west Africa—the results will be much more spatially 

consistent (increasing number of consecutive dry days). 

These regional patterns can be analyzed in relation to the Koeppen Climate Zones (Figure 10) 

which classify the world by arid to moist regions, precipitation seasonality, and different 

temperature ranges. Looking at the change in consecutive dry days relative to the Koeppen regions 

shows similar spatial patterns between the zones and climate change (Figures 10 & 11). This shows 

that if the area you are analyze spans different climate regions, it is even more important to assess 

the spatial variation in climate change. 

 

Ensemble Average (no Weighting) Weighted Ensemble Average 
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Figure 10: Koeppen’s Climate Classification (obtained from: http://koeppen-geiger.vu-

wien.ac.at/present.htm) 

 

 

 

Figure 11: Notice the spatial relationship between change in consecutive dry days and the Koeppen climate 

regions for Africa and Middle East (See figure 10 for Koeppen Region descriptions).  

http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm
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Section 5: Using daily downscaled data in impact modeling 

Collaboration with Dr. Jawoo Koo (International Food Policy Research Institute), Dr. Zhiming Qi 

(International Food Policy Research Institute), and Dr. Jorge Escurra (World Bank) 

 

Downscaled climate data at the daily time scale is very important for impact modeling—especially 

for water resources, agriculture, among others—and the data described in this document here can 

be directly used in agricultural crop models and hydrological water resources models. Two case 

studies were conducted to demonstrate the utility of daily downscaled data: 1) hydrologic impacts 

of climate change in the Nile Basin using SWAT modeling; 2) food security impacts in Egypt and 

Ethiopia using the DSSAT crop model (in collaboration with the International Food Policy Research 

Institute).  

The first case study demonstrates how daily downscaled climate data can be useful for calibrating a 

hydrological model (Figure 12). Since the daily variation comes from the climate model, they have 

spatial correlation in weather events (i.e. when a large storm comes through many neighboring grid 

cells have precipitation at the same time), and temporal correlation (i.e. the rain may last for 

multiple days in the grid cells). These correlations are important for more accurately modeling 

river flows. 

 

Figure 12: Historic observed and modeled from gridded climate data for flow stations (a) Blue Nile at 

Kharthoum and (b) Abay at Kessie. 
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The second case study shows the utility of these daily downscaled climate data for crop modeling. It 

successfully modeled crop yields in Egypt and Kenya. For one, this case study shows that the daily 

downscaled climate model data simulated greater the year-to-year variation in crop yields than did 

the weather generator. This is important as it is especially the low yield years that are most 

important for food security issues (Figure 13).  

Second this case study shows that the use of fertilizer and irrigation can be optimized to produce 

the greatest increase in yield per unit of application, which is important for adaptation planning. It 

shows that there is a positive and increasing return on application of both irrigation and Nitrogen 

fertilizer up to a certain point, then there is virtally no return on application (Figure 14 and 15a). In 

addition, this shows that with climate change the optimal application of irrigation will change with 

future climate, and that 13% more irrigation will be required to obtain the optimum yield, and that 

even with the increase in irrigation the maximum yield will be reduced by 30% compared to the 

historic climate. This provides information to agricultural managers to know under which 

circumstances crop yields can be most improved in the face of climate change. 
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Figure 13: DSSAT modeled crop yields with double Nitrogen using the daily downscaled future climate 

projections from Girvetz et al. 2012 compared to DSSAT modeled crop yields based on weather 

generator data. Note that the average yields are very similar, but the variance in yields represented by 

the horizontal lines is decreased when the weather generator data is used. 
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Figure 14: Maize yield response to fertilization rate at a site in Egypt. Note that fertilization above 

approximately 100 kg N ha-1 does not improve yields, but that increasing N application between 50-100 

kg N ha-1 marginally improved yields more than increasing N application between 0-50.  
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Figure 15: Maize yield to irrigation at an Egypt site as simulated by RZWQM2 model in the (a) historic 

climate 1961-1990, and (b) in the future climate 2081-2100. Note the optimal irrigation rate increases in 

the future by 13.4 % (from 32.0 to 36.3 cm), and even with this increase in irrigation the overall yield is 

reduced in the future by 30% (from 5597 to 3913 kg/ha). 
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Appendix 1: Quality control for daily downscaled climate models 
 

 

For precipitation results, we checked for 

1. Negative values of precipitation.  

 

2. Daily precipitation values in excess of 400 mm/day. Such values are not necessarily 

erroneous, but they should not occur too often.  We calculated the rate of occurrence of such 

values in the 20th and 21st centuries. 

 

3. Locations where precipitation occurs every day. 

 

 

The following Tables A1.1 show the results of this quality control analysis: 
 

Model Name 20C B1 A1B A2 

CGCM3.1 (T47) 641 862 1274 1371 

CNRM-CM3 604 558 1068 1438 

GFDL-CM2.0 447 1022 1106 1084 

GFDL-CM2.1 530 886 1431 1469 

IPSL-CM4 573 822 862 1052 

MIROC3.2 (medres) 605 574 947 681 

ECHO-G 636 881 1330 1106 

ECHAM5/ MPI-OM 568 682 N/A 820 

MRI-CGCM2.3.2 521 556 819 686 

 

Table A1.1: Number of grid cells with precipitation values in excess of 400 mm/day. Note this is out of 

approximately 4.5 billion bias corrected and statistically downscaled grid cells, showing these occur 

approximately 1 in every 5,000,000 grid cells. It is expected that some grid cells will be greater than 400 

mm precipitation for specific days. 

 

For daily minimum and maximum temperatures, the following were checked: 

 

1. The maximum value of Tmax and the minimum value of Tmin for both the 20th and 21st 

century periods (see table below for minimum and maximum values for both Tmin and 

Tmax. 

2. The number of cases where Tmin < -50 C, and Tmax > 50 C 

3. Compared at each location the median values of bias-corrected (but not downscaled) model 

results to those in observations. By design, the median value for the bias-corrected data (for 

the 30-day moving window) should precisely agree with the 30-day moving window 

median value of the observed data.  
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4. Compared at each location the overall trend before vs. after bias correction. The bias 

correction procedure is designed to preserve trends. 

 

The following tables A1.2-A1.4  show the results of this quality control analysis: 
 

Model Name 20C B1 A1B A2 

CGCM3.1 (T47) -91.83 -81.37 -80.71 -82.94 

CNRM-CM3 -89.06 -89.90 -80.80 -86.64 

GFDL-CM2.0 -87.86 -83.89 -84.64 -86.44 

GFDL-CM2.1 -89.98 -81.96 -81.87 -85.04 

IPSL-CM4 -91.80 -80.57 -79.82 -82.68 

MIROC3.2 (medres) -86.24 -77.30 -76.84 -81.31 

ECHO-G -90.90 -81.81 -85.55 -82.37 

ECHAM5/ MPI-OM -87.17 -81.60 N/A -81.00 

MRI-CGCM2.3.2 -91.75 -85.50 -82.27 -87.73 

 

Table A1.2:  Minimum values for Tmin among all grid cells: 
 

 

Model Name 20C B1 A1B A2 

CGCM3.1 (T47) 42.40 44.09 47.15 47.14 

CNRM-CM3 42.69 44.39 46.30 48.76 

GFDL-CM2.0 42.22 45.66 48.51 48.32 

GFDL-CM2.1 42.40 44.96 47.89 48.20 

IPSL-CM4 42.31 45.38 47.67 46.60 

MIROC3.2 (medres) 43.18 45.99 48.02 48.91 

ECHO-G 42.40 45.62 48.15 48.29 

ECHAM5/ MPI-OM 42.20 47.57 N/A 48.30 

MRI-CGCM2.3.2 42.29 44.56 45.39 47.97 

 

Table A1.3: Maximum values for Tmin among all grid cells: 

 

 

Model Name 20C B1 A1B A2 

CGCM3.1 (T47) -74.04 -65.41 -66.41 -63.74 

CNRM-CM3 -74.03 -69.27 -63.66 -64.49 

GFDL-CM2.0 -70.00 -67.07 -68.81 -68.14 

GFDL-CM2.1 -74.07 -66.71 -64.31 -64.30 

IPSL-CM4 -69.96 -64.52 -63.52 -70.62 

MIROC3.2 (medres) -69.78 -64.60 -63.67 -64.91 

ECHO-G -73.91 -66.18 -63.55 -63.27 

ECHAM5/ MPI-OM -74.06 -66.88 N/A -65.55 
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MRI-CGCM2.3.2 -69.22 -66.36 -66.77 -65.14 

 

Table A1.4: Minimum values for Tmax among all grid cells: 

 
 

Model Name 20C B1 A1B A2 

CGCM3.1 (T47) 61.88 61.56 62.51 61.95 

CNRM-CM3 60.36 65.24 65.20 64.47 

GFDL-CM2.0 62.54 62.18 64.94 66.18 

GFDL-CM2.1 63.67 65.87 64.52 67.03 

IPSL-CM4 62.08 64.45 64.22 66.29 

MIROC3.2 (medres) 60.54 63.26 64.02 66.55 

ECHO-G 62.03 61.55 64.93 64.46 

ECHAM5/ MPI-OM 61.34 63.93 N/A 65.84 

MRI-CGCM2.3.2 60.89 62.09 63.02 64.97 

 

Table A1.5: Maximum values for Tmax among all grid cells: 
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Appendix 2: Derivative statistics data ranges for summarized across all climate models 

These were calculated across all grid cells in the world, GCMs, model runs, emissions scenarios, and time periods. The minimum and 

maximum were calculated both across all years (i.e. the highest single year) and for the averages of the three time periods (1961-1999, 

2046-2065, 2081-2099). Note that rounding can cause values to be outside of the expected range by < 1% (e.g., TN90P, TX90P). 

  Annual Monthly 

Variable 
Minimum 

All Years 

Minimum 

20/38 yr 

Normal 

Mean 

Maximum 

20/30 yr 

normal 

Maximum 

All Years 

Minimum 

All Years 

Minimum 

20/30 yr 

Normal 

Mean 

Maximum 

20/30 yr 

normal 

Maximum 

All Years 

CD18 0 0 1,363 6,559 7,209 0 0 114 547 896 

CDD 0 6 64 365 366           

CDD5 0 1 12 22 31           

FD 0 0 117 365 366 0 0 10 30 31 

GD10 0 0 2,868 9,479 10,129 0 0 239 790 1,144 

HD18 0 0 3,931 16,721 18,811 0 0 328 1,393 2,500 

HWDI 0 0 55 330 364           

pr 0 0 824 16,944 24,040 0 0 69 1,412 11,067 

R02 0 0 135 348 365 0 0 11 29 31 

R5D 0 0 42 791 1,429           

R90P 0 0 13 46 100 0 0 11 32 100 

R90PTOT 0 0 37 81 100 0 0 24 61 100 

SDII 1 1 8 103 175 1 1 7 78 695 

tasmax -48 -21 17 42 45 -59 -20 17 43 55 

tasmin -65 -40 5 31 33 -75 -39 5 31 42 

TN10P 0 1 3 25 98 0 1 3 24 100 

TN90P 0 11 37 101 101 0 11 37 100 100 

TNN -90 -69 -16 26 28 -90 -48 -2 28 40 

TX10P 0 1 4 28 99 0 1 4 28 100 

TX90 -9 -4 29 53 54           

TX90P 0 11 33 100 101 0 11 33 100 100 

TXX -6 1 35 57 65 -51 -13 23 47 65 
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