66 research outputs found

    Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales : results of a biogeochemical model

    Get PDF
    A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics–biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and a high-impact scenario with massive expansion of tidal energy extraction to 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The massive-expansion 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of the Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher-resolution model and (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned

    Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Get PDF
    International audienceA 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM) coupled with the European Regional Seas Ecosystem Model (ERSEM) has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (over)saturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics) have shown that the nutrient dynamics are linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic), or to coupled nitrification-denitrification (under strong organic inputs). The model indicates the permanent stratification to be the main feature of the system as regulator of carbon and nutrient budgets. The model predicts that most of the carbon produced in the euphotic zone is also consumed in the water column and this enhances the importance of heterotrophic benthic processes as final closure of carbon and nutrient cycles in the open Baltic

    Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Get PDF
    A 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM) coupled with the European Regional Seas Ecosystem Model (ERSEM) has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (over)saturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics) have shown that the nutrient dynamics are linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic), or to coupled nitrification-denitrification (under strong organic inputs). The model indicates the permanent stratification to be the main feature of the system as regulator of carbon and nutrient budgets. The model predicts that most of the carbon produced in the euphotic zone is also consumed in the water column and this enhances the importance of heterotrophic benthic processes as final closure of carbon and nutrient cycles in the open Baltic

    Numerical modelling of physical processes governing larval transport in the southern North Sea

    Get PDF
    A three-dimensional hydrodynamic model (GETM) was coupled with a particle tracking routine (GITM) to study the inter-annual variability in transport paths of particles in the North Sea and English Channel. For validation, a comparison with observed drifter trajectories is also presented here. This research investigated to what extent variability in the hydrodynamic conditions alone (reflecting passive particle transport) contributed to inter-annual variability in the transport of eggs and larvae. In this idealised study, no a priori selection of specific spawning grounds or periods was made and no active behaviour (vertical migration) or mortality was included. In this study, egg and larval development towards coastal nursery areas was based solely on sea water temperature, while settlement areas were defined by a threshold water depth. Results showed strong inter-annual variability in drift direction and distance, caused by a combination of wind speed and direction. Strong inter-annual variability was observed both in absolute amount of settlement in several coastal areas, and in the relative importance of the different areas. The effects of wind and temperature variability are minor for settlement along the western shores of the North Sea and in the English Channel, but have a very significant impact on settlement along the eastern shores of the North Sea. Years with strong south-westerly winds across the Dover Straight resulted in higher settlement figures along its eastern shores of the North Sea (standard deviation 37% of the mean annual settlement value). Settlement in the western Dutch Wadden Sea did not only show inter-annual variability, but patterns were also variable within each year and revealed seasonal changes in the origin of particles: during winter, stronger currents along with colder temperatures generally result in particles originating from further away

    Connectivity of larval stages of sedentary marine communities between hard substrates and offshore structures in the North Sea

    Get PDF
    Man-made structures including rigs, pipelines, cables, renewable energy devices, and ship wrecks, offer hard substrate in the largely soft-sediment environment of the North Sea. These structures become colonised by sedentary organisms and non-migratory reef fish, and form local ecosystems that attract larger predators including seals, birds, and fish. It is possible that these structures form a system of interconnected reef environments through the planktonic dispersal of the pelagic stages of organisms by ocean currents. Changes to the overall arrangement of hard substrate areas through removal or addition of individual man-made structures will affect the interconnectivity and could impact on the ecosystem. Here, we assessed the connectivity of sectors with oil and gas structures, wind farms, wrecks, and natural hard substrate, using a model that simulates the drift of planktonic stages of seven organisms with sedentary adult stages associated with hard substrate, applied to the period 2001–2010. Connectivity was assessed using a classification system designed to address the function of sectors in the network. Results showed a relatively stable overall spatial distribution of sector function but with distinct variations between species and years. The results are discussed in the context of decommissioning of oil and gas infrastructure in the North Sea

    Modelling potential production of macroalgae farms in UK and Dutch coastal waters

    Get PDF
    There is increasing interest in macroalgae farming in European waters for a range of applications, including food, chemical extraction for biofuel production. This study uses a 3-D numerical model of hydrodynamics and biogeochemistry to investigate potential production and environmental effects of macroalgae farming in UK and Dutch coastal waters. The model included four experimental farms in different coastal settings in Strangford Lough (Northern Ireland), in Sound of Kerrera and Lynn of Lorne (north-west Scotland) and in the Rhine plume (the Netherlands), as well as a hypothetical large-scale farm off the UK north Norfolk coast. The model could not detect significant changes in biogeochemistry and plankton dynamics at any of the farm sites averaged over the farming season. The results showed a range of macroalgae growth behaviours in response to simulated environmental conditions. These were then compared with in situ observations where available, showing good correspondence for some farms and less good correspondence for others. At the most basic level, macroalgae production depended on prevailing nutrient concentrations and light conditions, with higher levels of both resulting in higher macroalgae production. It is shown that under non-elevated and interannually varying winter nutrient conditions, farming success was modulated by the timings of the onset of increasing nutrient concentrations in autumn and nutrient drawdown in spring. Macroalgae carbohydrate content also depended on nutrient concentrations, with higher nutrient concentrations leading to lower carbohydrate content at harvest. This will reduce the energy density of the crop and thus affect its suitability for conversion into biofuel. For the hypothetical large-scale macroalgae farm off the UK north Norfolk coast, the model suggested high, stable farm yields of macroalgae from year to year with substantial carbohydrate content and limited environmental effects

    Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay

    Get PDF
    In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed
    • …
    corecore