124 research outputs found

    Finite-Element Discretization of Static Hamilton-Jacobi Equations Based on a Local Variational Principle

    Full text link
    We propose a linear finite-element discretization of Dirichlet problems for static Hamilton-Jacobi equations on unstructured triangulations. The discretization is based on simplified localized Dirichlet problems that are solved by a local variational principle. It generalizes several approaches known in the literature and allows for a simple and transparent convergence theory. In this paper the resulting system of nonlinear equations is solved by an adaptive Gauss-Seidel iteration that is easily implemented and quite effective as a couple of numerical experiments show.Comment: 19 page

    Circulating Matrix Metalloproteinase-9 Is Associated with Cardiovascular Risk Factors in a Middle-Aged Normal Population

    Get PDF
    Background: Elevated levels of circulating matrix metalloproteinase-9 (MMP-9) have been demonstrated in patients with established coronary artery disease (CAD). The aim of this study was to analyse levels of MMP-9 in a population free from symptomatic CAD and investigate their associations with cardiovascular (CV) risk factors, including C-reactive protein (CRP).   Methods: A cross-sectional study was performed in a population based random sample aged 45–69 (n = 345, 50% women). MMP-9 levels were measured in EDTA-plasma using an ELISA-method. CV risk factors were measured using questionnaires and standard laboratory methods. Results: Plasma MMP-9 was detectable in all participants, mean 38.9 ng/mL (SD 22.1 ng/mL). Among individuals without reported symptomatic CAD a positive association (p&lt;0.001) was seen, for both men and women, of MMP-9 levels regarding total risk load of eight CV risk factors i.e. blood pressure, dyslipidemia, diabetes, obesity, smoking, alcohol intake, physical activity and fruit and vegetable intake. The association was significant also after adjustment for CRP, and was not driven by a single risk factor alone. In regression models adjusted for age, sex, smoking, alcohol intake and CRP, elevated MMP-9 levels were independently positively associated with systolic blood pressure (p = 0.037), smoking (p&lt;0.001), alcohol intake (p = 0.003) and CRP (p&lt;0.001). The correlation coefficient between MMP-9 and CRP was r = 0.24 (p&lt;0.001).   Conclusions: In a population without reported symptomatic CAD, MMP-9 levels were associated with total CV risk load as well as with single risk factors. This was found also after adjustment for CRP  Original Publication: Peter Garvin, Lennart Nilsson, John Carstensen, Lena Jonasson and Margareta Kristenson, Circulating Matrix Metalloproteinase-9 Is Associated with Cardiovascular Risk Factors in a Middle-Aged Normal Population, 2008, PLoS ONE, (3), 3, e1774. http://dx.doi.org/10.1371/journal.pone.0001774 Licensee: Public Library of Science (PLoS) http://www.plos.org/</p

    Biomarkers of Extracellular Matrix Metabolism (MMP-9 and TIMP-1) and Risk of Stroke, Myocardial Infarction, and Cause-Specific Mortality: Cohort Study

    Get PDF
    Objective: Turnover of the extracellular matrix in all solid organs is governed mainly by a balance between the degrading matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). An altered extracellular matrix metabolism has been implicated in a variety of diseases. We investigated relations of serum levels of MMP-9 and TIMP-1 to mortality risk from an etiological perspective. Design: The prospective Uppsala Longitudinal Study of Adult Men (ULSAM) cohort, followed from 1991–1995 for up to 18.1 years. A random population-based sample of 1,082 71-year-old men, no loss to follow-up. Endpoints were all-cause (n = 628), cardiovascular (n = 230), non-cardiovascular (n = 398) and cancer mortality (n = 178), and fatal or non-fatal myocardial infarction (n = 138) or stroke (n = 163). Results: Serum MMP-9 and TIMP-1 levels were associated with risk of all-cause mortality (Cox proportional hazard ratio [HR] per standard deviation 1.10, 95% confidence interval [CI] 1.03–1.19; and 1.11, 1.02–1.20; respectively). TIMP-1 levels were mainly related to risks of cardiovascular mortality and stroke (HR per standard deviation 1.22, 95% CI 1.09–1.37; and 1.18, 1.04–1.35; respectively). All relations except those of TIMP-1 to stroke risk were attenuated by adjustment for cardiovascular disease risk factors. Relations in a subsample without cardiovascular disease or cancer were similar to those in the total sample. Conclusion: In this community-based cohort of elderly men, serum MMP-9 and TIMP-1 levels were related to mortality risk. An altered extracellular matrix metabolism may be involved in several detrimental pathways, and circulating MMP-9 or TIMP-1 levels may be relevant markers thereof

    Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths

    Get PDF
    The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∌18,000 families of orthologous genes, we found ∌2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome

    Fast Marching Method for Generic Shape from Shading

    Full text link
    International audienceWe develop a fast numerical method to approximate the solutions of a wide class of equations associated to the Shape From Shading problem. Our method, which is based on the control theory and the interfaces propagation, is an extension of the ?Fast Marching Method? (FMM) [30,25]. In particular our method extends the FMM to some equations for which the solution is not systematically decreasing along the optimal trajectories. We apply with success our one-pass method to the Shape From Shading equations which are involved by the most relevant and recent modelings [22,21] and which cannot be handled by the most recent extensions of the FMM [26,8]

    Coalescent Simulations Reveal Hybridization and Incomplete Lineage Sorting in Mediterranean Linaria

    Get PDF
    We examined the phylogenetic history of Linaria with special emphasis on the Mediterranean sect. Supinae (44 species). We revealed extensive highly supported incongruence among two nuclear (ITS, AGT1) and two plastid regions (rpl32-trnLUAG, trnS-trnG). Coalescent simulations, a hybrid detection test and species tree inference in *BEAST revealed that incomplete lineage sorting and hybridization may both be responsible for the incongruent pattern observed. Additionally, we present a multilabelled *BEAST species tree as an alternative approach that allows the possibility of observing multiple placements in the species tree for the same taxa. That permitted the incorporation of processes such as hybridization within the tree while not violating the assumptions of the *BEAST model. This methodology is presented as a functional tool to disclose the evolutionary history of species complexes that have experienced both hybridization and incomplete lineage sorting. The drastic climatic events that have occurred in the Mediterranean since the late Miocene, including the Quaternary-type climatic oscillations, may have made both processes highly recurrent in the Mediterranean flora

    Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments

    Get PDF
    Fossil records indicate that life appeared in marine environments ∌3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land

    Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources

    Get PDF
    Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid).Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.Organismic and Evolutionary Biolog
    • 

    corecore