675 research outputs found

    Patient–physician communication concerning participation in cancer chemotherapy trials

    Get PDF
    Cancer patients demand a high level of involvement in decisions concerning treatment. Many patients are informed about experimental trials, and especially the first consultation may be crucial for the future communication and treatment process. Patients with nonresectable non-small-cell lung cancer or colorectal cancer informed about experimental chemotherapy completed a questionnaire on satisfaction with the communication process, general attitude towards experimental treatments, the substance of information, and personal contact with the physician following their first consultation in a medical oncology unit. Physicians completed a questionnaire on their perception of the patients’ satisfaction. Among 68 physician–cancer patient pairs, 29 patients were informed on chemotherapy in randomised trials and 39 in nonrandomised studies. The general attitude towards experimental treatment was positive or very positive in 71% of patients. Information on the treatment was perceived as completely adequate in 93% of patients informed on randomised and in 67% informed on nonrandomised trials. Physicians underestimated the patients’ satisfaction with the overall communication process, the personal contact, the patients’ perceived sufficiency of the specific treatment information and their ability to decide on study entry. In conclusion, considerable differences were observed between patients informed about experimental chemotherapy in randomised and nonrandomised trials, both with respect to their perception of how adequate the information on the specific treatments were, and whether it was sufficient for decisions on study entry. This study type effect should be accounted for in future evaluations of communication and patient satisfaction. The data also support the fact that cancer patients have a desire for and ability to understand rather detailed and comprehensive treatment information

    Determinants of new drugs prescription in the Swiss healthcare market.

    Get PDF
    Drug markets are very complex and, while many new drugs are registered each year, little is known about what drives the prescription of these new drugs. This study attempts to lift the veil from this important subject by analyzing simultaneously the impact of several variables on the prescription of novelty. Data provided by four Swiss sickness funds were analyzed. These data included information about more than 470,000 insured, notably their drug intake. Outcome variable that captured novelty was the age of the drug prescribed. The overall variance in novelty was partitioned across five levels (substitutable drug market, patient, physician, region, and prescription) and the influence of several variables measured at each of these levels was assessed using a non-hierarchical multilevel model estimated by Bayesian Markov Chain Monte Carlo methods. More than 92% of the variation in novelty was explained at the substitutable drug market-level and at the prescription-level. Newer drugs were prescribed in markets that were costlier, less concentrated, included more insured, provided more drugs and included more active substances. Over-the-counter drugs were on average 12.5 years older while generic drugs were more than 15 years older than non-generics. Regional disparities in terms of age of prescribed drugs could reach 2.8 years. Regulation of the demand has low impact, with little variation explained at the patient-level and physician-level. In contrary, the market structure (e.g. end of patent with generic apparition, concurrence among producers) had a strong contribution to the variation of drugs ages

    "Armenonville" in het Maria-Hendrikapark

    Get PDF

    Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard

    Get PDF
    Aim: Species with temperature-dependent sex determination (TSD) are particularly vulnerable to climate change because a resultant skew in population sex ratio can have severe demographic consequences and increase vulnerability to local extinction. The Australian central bearded dragon (Pogona vitticeps) has a thermosensitive ZZ male/ZW female system of genetic sex determination (GSD). High incubation temperatures cause reversal of the ZZ genotype to a viable female phenotype. Nest temperatures in the wild are predicted to vary on a scale likely to produce heterogeneity in the occurrence of sex reversal, and so we predict that sex reversal will correlate positively with inferred incubation conditions. Location: Mainland Australia. Methods: Wild-caught specimens of P. vitticeps vouchered in museum collections and collected during targeted field trips were genotypically and phenotypically sexed to determine the distribution of sex reversal across the species range. To determine whether environmental conditions or genetic structure can explain this distribution, we infer the incubation conditions experienced by each individual and apply a multi-model inference approach to determine which conditions associate with sex reversal. Further, we conduct reduced representation sequencing on a subset of specimens to characterize the population structure of this broadly distributed species. Results: Here we show that sex reversal in this widespread Australian dragon lizard is spatially restricted to the eastern part of the species range. Neither climatic variables during the inferred incubation period nor geographic population genetic structure explain this disjunct distribution of sex reversal. The main source of genetic variation arose from isolation by distance across the species range. Main conclusions: We propose that local genetic adaptation in the temperature threshold for sex reversal can counteract the sex-reversing influence of high incubation temperatures in P. vitticeps. Our study demonstrates that complex evolutionary processes need to be incorporated into modelling biological responses to future climate scenarios

    Electrical current distribution across a metal-insulator-metal structure during bistable switching

    Full text link
    Combining scanning electron microscopy (SEM) and electron-beam-induced current (EBIC) imaging with transport measurements, it is shown that the current flowing across a two-terminal oxide-based capacitor-like structure is preferentially confined in areas localized at defects. As the thin-film device switches between two different resistance states, the distribution and intensity of the current paths, appearing as bright spots, change. This implies that switching and memory effects are mainly determined by the conducting properties along such paths. A model based on the storage and release of charge carriers within the insulator seems adequate to explain the observed memory effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy

    Genotype-Phenotype Associations of the CD-Associated Single Nucleotide Polymorphism within the Gene Locus Encoding Protein Tyrosine Phosphatase Non-Receptor Type 22 in Patients of the Swiss IBD Cohort.

    Get PDF
    Protein tyrosine phosphatase non-receptor type 22 (PTPN22) plays an important role in immune cell function and intestinal homeostasis. The single nucleotide polymorphism (SNP) rs2476601 within the PTPN22 gene locus results in aberrant function of PTPN22 protein and protects from Crohn's disease (CD). Here, we investigated associations of PTPN22 SNP rs2476601 in inflammatory bowel disease (IBD) patients in the Swiss IBD Cohort Study (SIBDCS). 2'028 SIBDCS patients (1173 CD and 855 ulcerative colitis (UC) patients) were included. The clinical characteristics were analysed for an association with the presence of the PTPN22 SNP rs2476601 genotypes 'homozygous variant' (AA), 'heterozygous' (GA) and 'homozygous wild-type' (GG). 13 patients (0.6%) were homozygous variant (AA) for the PTPN22 polymorphism, 269 (13.3%) heterozygous variant (GA) and 1'746 (86.1%) homozygous wild-type (GG). In CD, AA and GA genotypes were associated with less use of steroids and antibiotics, and reduced prevalence of vitamin D and calcium deficiency. In UC the AA and GA genotype was associated with increased use of azathioprine and anti-TNF antibodies, but significantly less patients with the PTPN22 variant featured malabsorption syndrome (p = 0.026). Our study for the first time addressed how presence of SNP rs2476601 within the PTPN22 gene affects clinical characteristics in IBD-patients. Several factors that correlate with more severe disease were found to be less common in CD patients carrying the A-allele, pointing towards a protective role for this variant in affected CD patients. In UC patients however, we found the opposite trend, suggesting a disease-promoting effect of the A-allele

    A global spectral library to characterize the world's soil

    Get PDF
    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about soil to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible-near infrared (vis-NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition and be associated to land cover and its global geographic distribution, which acts as a surrogate for global climate variability. We also show the usefulness of the global spectra for predicting soil attributes such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, and pH. Using wavelets to treat the spectra, which were recorded in different laboratories using different spectrometers and methods, helped to improve the spectroscopic modelling. We found that modelling a diverse set of spectra with a machine learning algorithm can find the local relationships in the data to produce accurate predictions of soil properties. The spectroscopic models that we derived are parsimonious and robust, and using them we derived a harmonized global soil attribute dataset, which might serve to facilitate research on soil at the global scale. This spectroscopic approach should help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess and monitor soil at scales ranging from regional to global. New contributions to the library are encouraged so that this work and our collaboration might progress to develop a dynamic and easily updatable database with better global coverage. We hope that this work will reinvigorate our community's discussion towards larger, more coordinated collaborations. We also hope that use of the database will deepen our understanding of soil so that we might sustainably manage it and extend the research outcomes of the soil, earth and environmental sciences towards applications that we have not yet dreamed of
    • 

    corecore