399 research outputs found
Scaling of interfaces in brittle fracture and perfect plasticity
The roughness properties of two-dimensional fracture surfaces as created by
the slow failure of random fuse networks are considered and compared to yield
surfaces of perfect plasticity with similar disorder. By studying systems up to
a linear size L=350 it is found that in the cases studied the fracture surfaces
exhibit self-affine scaling with a roughness exponent close to 2/3, which is
asymptotically exactly true for plasticity though finite-size effects are
evident for both. The overlap of yield or minimum energy and fracture surfaces
with exactly the same disorder configuration is shown to be a decreasing
function of the system size and to be of a rather large magnitude for all cases
studied. The typical ``overlap cluster'' length between pairs of such
interfaces converges to a constant with increasing.Comment: Accepted for publication in Phys. Rev.
mm-Wave DRW Antenna Phase Centre Determination
This document presents an approach to the phase centre determination of a dielectric rod waveguide (DRW) antenna by means of measurements obtained with a planar measuring system at millimeter wave lengths. Phase centre determination by the least squares fit technique is described in this document for different DRW antennas (silicon and sapphire). Results at different operating frequencies are offered
Recommended from our members
Cloud-base vertical velocity statistics: a comparison between an atmospheric mesoscale model and remote sensing observations
The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future
Statistical properties of fracture in a random spring model
Using large scale numerical simulations we analyze the statistical properties
of fracture in the two dimensional random spring model and compare it with its
scalar counterpart: the random fuse model. We first consider the process of
crack localization measuring the evolution of damage as the external load is
raised. We find that, as in the fuse model, damage is initially uniform and
localizes at peak load. Scaling laws for the damage density, fracture strength
and avalanche distributions follow with slight variations the behavior observed
in the random fuse model. We thus conclude that scalar models provide a
faithful representation of the fracture properties of disordered systems.Comment: 12 pages, 17 figures, 1 gif figur
Micro-crystalline inclusions analysis by PIXE and RBS
A characteristic feature of the nuclear microprobe using a 3 MeV proton beam
is the long range of particles (around 70 \mu m in light matrices). The PIXE
method, with EDS analysis and using the multilayer approach for treating the
X-ray spectrum allows the chemistry of an intra-crystalline inclusion to be
measured, provided the inclusion roof and thickness at the impact point of the
beam (Z and e, respectively) are known (the depth of the inclusion floor is Z +
e). The parameter Z of an inclusion in a mineral can be measured with a
precision of around 1 \mu m using a motorized microscope. However, this value
may significantly depart from Z if the analyzed inclusion has a complex shape.
The parameter e can hardly be measured optically. By using combined RBS and
PIXE measurements, it is possible to obtain the geometrical information needed
for quantitative elemental analysis. This paper will present measurements on
synthetic samples to investigate the advantages of the technique, and also on
natural solid and fluid inclusions in quartz. The influence of the geometrical
parameters will be discussed with regard to the concentration determination by
PIXE. In particular, accuracy of monazite micro-inclusion dating by coupled
PIXE-RBS will be presented
Using impact response surfaces to analyse the likelihood of impacts on crop yield under probabilistic climate change
Conventional methods of modelling impacts of future climate change on crop yields often rely on a limited selection of projections for representing uncertainties in future climate. However, large ensembles of climate projections offer an opportunity to estimate yield responses probabilistically. This study demonstrates an approach to probabilistic yield estimation using impact response surfaces (IRSs). These are constructed from a set of sensitivity simulations that explore yield responses to a wide range of changes in temperature and precipitation. Options for adaptation and different levels of future atmospheric carbon dioxide concentration [CO2] defined by representative concentration pathways (RCP4.5 and RCP8.5) were also considered. Model-based IRSs were combined with probabilistic climate projections to estimate impact likelihoods for yields of spring barley (Hordeum vulgare L.) in Finland during the 21st century. Probabilistic projections of climate for the same RCPs were overlaid on IRSs for corresponding [CO2] levels throughout the century and likelihoods of yield shortfall calculated with respect to a threshold mean yield for the baseline (1981â2010). Results suggest that cultivars combining short pre- and long post-anthesis phases together with earlier sowing dates produce the highest yields and smallest likelihoods of yield shortfall under future scenarios. Higher [CO2] levels generally compensate for yield losses due to warming under the RCPs. Yet, this does not happen fully under the more moderate warming of RCP4.5 with a weaker rise in [CO2], where there is a chance of yield shortfall throughout the century. Under the stronger warming but more rapid [CO2] increase of RCP8.5, the likelihood of yield shortfall drops to zero from mid-century onwards. Whilst the incremental IRS-based approach simplifies the temporal and cross-variable complexities of projected climate, it was found to offer a close approximation of evolving future likelihoods of yield impacts in comparison to a more conventional scenario-based approach. The IRS approach is scenario-neutral and existing plots can be used in combination with any new scenario that falls within the sensitivity range without the need to perform new runs with the impact model. A single crop model is used for demonstration, but an ensemble IRS approach could additionally capture impact model uncertainties.peerReviewe
Brightening of the global cloud field by nitric acid and the associated radiative forcing
Clouds cool Earth's climate by reflecting 20% of the incoming solar energy, while also trapping part of the outgoing radiation. The effect of human activities on clouds is poorly understood, but the present-day anthropogenic cooling via changes of cloud albedo and lifetime could be of the same order as warming from anthropogenic addition in CO<sub>2</sub>. Soluble trace gases can increase water condensation to particles, possibly leading to activation of smaller aerosols and more numerous cloud droplets. We have studied the effect of nitric acid on the aerosol indirect effect with the global aerosol-climate model ECHAM5.5-HAM2. Including the nitric acid effect in the model increases cloud droplet number concentrations globally by 7%. The nitric acid contribution to the present-day cloud albedo effect was found to be â0.32 W m<sup>â2</sup> and to the total indirect effect â0.46 W m<sup>â2</sup>. The contribution to the cloud albedo effect is shown to increase to â0.37 W m<sup>â2</sup> by the year 2100, if considering only the reductions in available cloud condensation nuclei. Overall, the effect of nitric acid can play a large part in aerosol cooling during the following decades with decreasing SO<sub>2</sub> emissions and increasing NO<sub>x</sub> and greenhouse gases
Failure of planar fiber networks
We study the failure of planar random fiber networks with computer simulations. The networks are grown by adding flexible fibers one by one on a growing deposit [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)], a process yielding realistic three dimensional network structures. The network thus obtained is mapped to an electrical analogue of the elastic problem, namely to a random fuse network with separate bond elements for the fiber-to-fiber contacts. The conductivity of the contacts (corresponding to the efficiency of stress transfer between fibers) is adjustable. We construct a simple effective medium theory for the current distribution and conductivity of the networks as a function of intra-fiber current transfer efficiency. This analysis compares favorably with the computed conductivity and with the fracture properties of fiber networks with varying fiber flexibility and network thickness. The failure characteristics are shown to obey scaling behavior, as expected of a disordered brittlematerial, which is explained by the high current end of the current distribution saturating in thick enough networks. For bond breaking, fracture load and strain can be estimated with the effective medium theory. For fiber breaking, we find the counter-intuitive result that failure is more likely to nucleate far from surfaces, as the stress is transmitted more effectively to the fibers in the interior.Peer reviewe
Disk and circumsolar radiances in the presence of ice clouds
The impact of ice clouds on solar disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0 to 8° from the center of the sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus (SPARTICUS) campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements obtained by the Sun and Aureole Measurements (SAM) instrument. First, the sensitivity of the radiances to the ice cloud properties and aerosol optical thickness is addressed. The angular dependence of the disk and circumsolar radiances is found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals) and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in comparisons with SAM data, the ice cloud optical thickness is adjusted for each case so that the simulated radiances agree closely (i.e., within 3âŻ%) with the measured disk radiances. Circumsolar radiances at angles larger than ââ3° are systematically underestimated when assuming smooth ice crystals, whereas the agreement with the measurements is better when rough ice crystals are assumed. Our results suggest that it may well be possible to infer the particle roughness directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.Peer reviewe
Quasi-static cracks and minimal energy surfaces
We compare the roughness of minimal energy(ME) surfaces and scalar
``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces
have the same roughness scaling, w sim L^zeta (L is system size) with zeta =
2/3. The 3-d ME and SQF results at strong disorder are consistent with the
random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk
dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger
prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough''
transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure
- âŠ