34 research outputs found

    Low-dose CT of the lung: potential value of iterative reconstructions

    No full text
    OBJECTIVES: To prospectively assess the impact of sinogram-affirmed iterative reconstruction (SAFIRE) on image quality of nonenhanced low-dose lung CT as compared to filtered back projection (FBP). METHODS: Nonenhanced low-dose chest CT (tube current-time product: 30 mAs) was performed on 30 patients at 100 kVp and on 30 patients at 80 kVp. Images were reconstructed with FBP and SAFIRE. Two blinded, independent readers measured image noise; two readers assessed image quality of normal anatomic lung structures on a five-point scale. Radiation dose parameters were recorded. RESULTS: Image noise in datasets reconstructed with FBP (57.4 ± 15.9) was significantly higher than with SAFIRE (31.7 ± 9.8, P < 0.001). Image quality was significantly superior with SAFIRE than with FBP (P < 0.01), without significant difference between FBP at 100 kVp and SAFIRE at 80 kVp (P = 0.68). Diagnostic image quality was present with FBP in 96% of images at 100 kVp and 88% at 80 kVp, and with SAFIRE in 100% at 100 kVp and 98% at 80 kVp. There were significantly more datasets with diagnostic image quality with SAFIRE than with FBP (P < 0.01). Mean CTDI(vol) and effective doses were 1.5 ± 0.7 mGy·cm and 0.7 ± 0.2 mSv at 100 kVp, and 1.4 ± 2.8 mGy·cm and 0.5 ± 0.2 mSv at 80 kVp (P < 0.001, both). CONCLUSIONS: Use of SAFIRE in low-dose lung CT reduces noise, improves image quality, and renders more studies diagnostic as compared to FBP. KEY POINTS : • Low-dose computed tomography is an important thoracic investigation tool. • Radiation dose can be less than 1 mSv with iterative reconstructions. • Iterative reconstructions render more low-dose lung CTs diagnostic compared to conventional reconstructions

    Joint Position Paper of the Working Group of Pacing and Electrophysiology of the French Society of Cardiology (SFC) and the Société française d'imagerie cardiaque et vasculaire diagnostique et interventionnelle (SFICV) on magnetic resonance imaging in patients with cardiac electronic implantable devices.

    No full text
    International audienceMagnetic resonance imaging (MRI) has become the reference imaging for the management of a large number of diseases. The number of MR examinations increases every year, simultaneously with the number of patients receiving a cardiac electronic implantable device (CEID). A CEID was considered an absolute contraindication for MRI for years. The progressive replacement of conventional pacemakers and defibrillators by MR-conditional CEIDs and recent data on the safety of MRI in patients with "MR-nonconditional" CEIDs have progressively increased the demand for MRI in patients with a CEID. However, some risks are associated with MRI in CEID carriers, even with "MR-conditional" devices because these devices are not "MR-safe". A specific programing of the device in "MR-mode" and monitoring patients during MRI remain mandatory for all patients with a CEID. A standardized patient workflow based on an institutional protocol should be established in each institution performing such examinations. This joint position paper of the Working Group of Pacing and Electrophysiology of the French Society of Cardiology and the Société française d'imagerie cardiaque et vasculaire diagnostique et interventionnelle (SFICV) describes the effect and risks associated with MRI in CEID carriers. We propose recommendations for patient workflow and monitoring and CEID programming in MR-conditional, "MR-conditional nonguaranteed" and MR-nonconditional devices
    corecore