1,212 research outputs found

    Multiple scattering measurements in laboratory and foggy atmosphere

    Get PDF
    Multiple scattering affects propagation of light beams in turbid media. Backscattering or forward scattering based measurements of atmospheric parameters are influenced by this effect. Although largely studied theoretically, the effect needs measurements in control of situations due to the large variety of situations of practical importance. The results of laboratory measurements pertaining to the transmission of a collimated light beam (Helium-Neon souce, 10 mW) through suspensions of latex spheres in water are presented and a comparison was made with the predictions of calculation in a foggy atmosphere will also be presented

    Anomalous out-of-equilibrium dynamics in the spin-ice material Dy2Ti2O7 under moderate magnetic fields

    Get PDF
    This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) through grants PICT 2013-2004, PICT 2014-2618 and PICT 2017-2347, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through Grant PIP 0446.We study experimentally and numerically the dynamics of the spin ice material Dy2Ti2O7 in the low temperature (T) and moderate magnetic field (B) regime (T ∈ [0.1, 1.7]  K, B ∈ [0, 0.3]  T). Our objective is to understand the main physics shaping the out-of-equilibrium magnetisation vs temperature curves in two different regimes. Very far from equilibrium, turning on the magnetic field after having cooled the system in zero field (ZFC) can increase the concentration of magnetic monopoles (localised thermal excitations present in these systems); this accelerates the dynamics. Similarly to electrolytes, this occurs through dissociation of bound monopole pairs. However, for spin ices the polarisation of the vacuum out of which the monopole pairs are created is a key factor shaping the magnetisation curves, with no analog. We observe a threshold field near 0.2 T for this fast dynamics to take place, linked to the maximum magnetic force between the attracting pairs. Surprisingly, within a regime of low temperatures and moderate fields, an extended Ohm's law can be used to describe the ZFC magnetisation curve obtained with the dipolar spin-ice model. However, in real samples the acceleration of the dynamics appears even sharper than in simulations, possibly due to the presence of avalanches. On the other hand, the effect of the field nearer equilibrium can be just the opposite to that at very low temperatures. Single crystals, as noted before for powders, abandon equilibrium at a blocking temperature TB which increases with field. Curiously, this behaviour is present in numerical simulations even within the nearest-neighbours interactions model. Simulations and experiments show that the increasing trend in TB is stronger for B||[100]. This suggests that the field plays a part in the dynamical arrest through monopole suppression, which is quite manifest for this field orientation.PostprintPeer reviewe

    Ultrafine particle distribution and chemical composition assessment during military operative trainings

    Get PDF
    The assessment of airborne particulate matter (PM) and ultrafine particles (UFPs) in battlefield scenarios is a topic of particular concern; (2) Methods: Size distribution, concentration, and chemical composition of UFPs during operative military training activities (target drone launches, ammunition blasting, and inert bomb impact) were investigated using an electric low-pressure impactor (ELPI+) and a scanning electron microscope (SEM), equipped with energy-dispersive spectroscopy (EDS); (3) Results: The median of UFPs, measured for all sampling periods and at variable distance from sources, was between 1.02 × 103 and 3.75 × 103 particles/cm3 for drone launches, between 3.32 × 103 and 15.4 × 103 particles/cm3 for the ammunition blasting and from 7.9 × 103 to 1.3 × 104 particles/cm3 for inert launches. Maximum peak concentrations, during emitting sources starting, were 75.5 × 106 and 17.9 × 106 particles/cm3, respectively. Particles from the drone launches were predominantly composed of silicon (Si), iron (Fe) and calcium (Ca), and those from the blasting campaigns by magnesium (Mg), sulphur (S), aluminum (Al), iron (Fe), barium (Ba) and silicon (Si); (4) Conclusions: The investigated sources produced UFPs with median values lower than other anthropogenic sources, and with a similar chemical compositio

    Barometric pumping of a fractured porous medium

    Get PDF
    International audienceBarometric pumping plays a crucial role in the release of trace gases from fractured porous media to the atmosphere, and it requires a rigorous and complete modeling in order to go beyond the approximate schemes available in the literature. Therefore, a coupled set of convection and convection-diffusion equations for a slightly compressible fluid in unsteady conditions should be solved. The numerical methodology is presented, and it is applied to conditions close to the ones of the Roselend Natural Laboratory (France). The precision of the code is assessed and the mechanism of barometric pumping is explained. The usual schematization by simple vertical fractures is shown to be only qualitative. Finally, barometric pumping is shown to be efficient in a narrow range of parameter values; its efficiency is a decreasing function of the matrix porosity and of the fracture density

    Preservation of Truncal Genomic Alterations in Clear Cell and Papillary Renal Cell Carcinomas with Sarcomatoid Features: An Intra- and Intertumoral, Multifocal Fluorescence in Situ Hybridization Analysis Reveals Limited Genetic Heterogeneity

    Get PDF
    Understanding tumor genomic heterogeneity may offer vital information in an age of targeted therapy for renal cell carcinoma. We sought to investigate hallmark truncal chromosomal alterations between conventional, sarcomatoid, and matched metastatic tumor foci in clear cell and papillary renal cell carcinomas. A retrospective review identified 58 cases including clear cell (CCRCC) and papillary renal cell carcinomas (PRCC). All cases contained sarcomatoid transformation. Additionally, 10 of 58 patients had matched metastatic disease available for analysis. Three separate foci of conventional and sarcomatoid morphologies were analyzed in each tumor using dual color interphase fluorescence in situ hybridization. In the CCRCC cohort, hallmark chromosome 3p deletion was identified in 71% of cases (37/52). Complete concordance of chromosomal status between intratumoral foci in sarcomatoid and conventional foci was 89% and 86%, respectively. Overall chromosome 3p status between matched conventional and sarcomatoid morphologies was identified in 98% of cases (51/52). Hallmark 3p deletion was present in 91% of CCRCC metastatic samples (10/11) and was concordant with the matched primary CCRCC tumor in 91% (10/11). In the PRCC cohort, trisomy 7 and 17 was identified in all six cases (6/6). Complete concordance between intratumoral foci of trisomy 7 and 17 was 83% (5/6). Trisomy 7 and 17 were identified in all metastatic PRCC samples with 100% concordance with the matched primary tumor. These data show the relative preservation of truncal chromosomal abnormalities between conventional and sarcomatoid morphologic as well as matched metastatic settings

    Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic “free diffusion inside a sphere”

    Get PDF
    Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal–organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10–4 S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic “free diffusion inside a sphere”, representing the first example of such a mechanism observed in MOFs
    corecore