635 research outputs found
A statistical multiresolution approach for face recognition using structural hidden Markov models
This paper introduces a novel methodology that combines the multiresolution feature of the discrete wavelet transform (DWT) with the local interactions of the facial structures expressed through the structural hidden Markov model (SHMM). A range of wavelet filters such as Haar, biorthogonal 9/7, and Coiflet, as well as Gabor, have been implemented in order to search for the best performance. SHMMs perform a thorough probabilistic analysis of any sequential pattern by revealing both its inner and outer structures simultaneously. Unlike traditional HMMs, the SHMMs do not perform the state conditional independence of the visible observation sequence assumption. This is achieved via the concept of local structures introduced by the SHMMs. Therefore, the long-range dependency problem inherent to traditional HMMs has been drastically reduced. SHMMs have not previously been applied to the problem of face identification. The results reported in this application have shown that SHMM outperforms the traditional hidden Markov model with a 73% increase in accuracy
Developing a methodology for carbon isotope analysis of lacustrine diatoms
Stable isotope analysis of sedimentary carbon in lakes can help reveal changes in terrestrial and aquatic carbon cycles. A method based on a single, photosynthetic organism, where host effects are minimised, should offer more precision than carbon isotope studies of bulk lake sediments. Here we report the development of a systematic method for use on fossil lacustrine diatom frustules, adapted from previous studies in marine environments. A step-wise cleaning experiment on diatomaceous lake sediments from Lake Challa, near Mount Kilimanjaro, was made to demonstrate the necessary treatment stages to remove external sedimentary carbon. Changes in soluble carbon compounds during these cleaning experiments were measured using gas chromatography/mass spectrometry (GC/MS). The mass spectrometry methods were refined to measure the small percentage of carbon in these samples and details of these methods are presented. Samples of cleaned diatoms containing <1% carbon yielded robust results. Carbon isotope analyses of diatom samples containing different species mixtures were performed and suggested that differences existed, although the effects lay within current experimental error and require further work. Unlike what was found in work on oxygen and silicon isotopes from diatom frustules, mineral contamination had no discernible impact on the diatom carbon isotope ratios from these sediments. The range of values found in the lakes investigated thus far can be interpreted with reference to the supply and nature of carbon from the catchment as well as to the demand generated from lake primary productivit
A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population
We present results of the coordinated observing campaign that made the first
subarcsecond localization of a Fast Radio Burst, FRB 121102. During this
campaign, we made the first simultaneous detection of an FRB burst by multiple
telescopes: the VLA at 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the
nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous
observing coverage at other observatories. We use multi-observatory constraints
and modeling of bursts seen only at 3 GHz to confirm earlier results showing
that burst spectra are not well modeled by a power law. We find that burst
spectra are characterized by a ~500 MHz envelope and apparent radio energy as
high as erg. We measure significant changes in the apparent
dispersion between bursts that can be attributed to frequency-dependent
profiles or some other intrinsic burst structure that adds a systematic error
to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB
class to estimate a volumetric birth rate of FRB sources Mpc yr, where is the number of bursts per
source over its lifetime. This rate is broadly consistent with models of FRBs
from young pulsars or magnetars born in superluminous supernovae or long
gamma-ray bursts, if the typical FRB repeats on the order of thousands of times
during its lifetime.Comment: 17 pages, 7 figures. Submitted to AAS Journal
AMI observations of unmatched Planck ERCSC LFI sources at 15.75 GHz
The Planck Early Release Compact Source Catalogue includes 26 sources with no
obvious matches in other radio catalogues (of primarily extragalactic sources).
Here we present observations made with the Arcminute Microkelvin Imager Small
Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at
declination > +10 degrees. Of the eight, four are detected and are associated
with known objects. The other four are not detected with the AMI SA, and are
thought to be spurious.Comment: 6 pages, 5 figures, 4 table
Determining the Physical Lens Parameters of the Binary Gravitational Microlensing Event MOA-2009-BLG-016
We report the result of the analysis of the light curve of the microlensing
event MOA-2009-BLG-016. The light curve is characterized by a short-duration
anomaly near the peak and an overall asymmetry. We find that the peak anomaly
is due to a binary companion to the primary lens and the asymmetry of the light
curve is explained by the parallax effect caused by the acceleration of the
observer over the course of the event due to the orbital motion of the Earth
around the Sun. In addition, we detect evidence for the effect of the finite
size of the source near the peak of the event, which allows us to measure the
angular Einstein radius of the lens system. The Einstein radius combined with
the microlens parallax allows us to determine the total mass of the lens and
the distance to the lens. We identify three distinct classes of degenerate
solutions for the binary lens parameters, where two are manifestations of the
previously identified degeneracies of close/wide binaries and positive/negative
impact parameters, while the third class is caused by the symmetric cycloid
shape of the caustic. We find that, for the best-fit solution, the estimated
mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun,
implying a brown-dwarf companion. However, there exists a solution that is
worse only by \Delta\chi^2 ~ 3 for which the mass of the secondary is above the
hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions
will be difficult as the relative lens-source proper motions for both are
similar and small (~ 1 mas/yr) and thus the lens will remain blended with the
source for the next several decades.Comment: 7 pages, 2 tables, and 5 figure
Radio continuum observations of Class I protostellar disks in Taurus: constraining the greybody tail at centimetre wavelengths
We present deep 1.8 cm (16 GHz) radio continuum imaging of seven young
stellar objects in the Taurus molecular cloud. These objects have previously
been extensively studied in the sub-mm to NIR range and their SEDs modelled to
provide reliable physical and geometrical parametres.We use this new data to
constrain the properties of the long-wavelength tail of the greybody spectrum,
which is expected to be dominated by emission from large dust grains in the
protostellar disk. We find spectra consistent with the opacity indices expected
for such a population, with an average opacity index of beta = 0.26+/-0.22
indicating grain growth within the disks. We use spectra fitted jointly to
radio and sub-mm data to separate the contributions from thermal dust and radio
emission at 1.8 cm and derive disk masses directly from the cm-wave dust
contribution. We find that disk masses derived from these flux densities under
assumptions consistent with the literature are systematically higher than those
calculated from sub-mm data, and meet the criteria for giant planet formation
in a number of cases.Comment: submitted MNRA
AMI-LA Observations of the SuperCLASS Super-cluster
We present a deep survey of the SuperCLASS super-cluster - a region of sky
known to contain five Abell clusters at redshift - performed using
the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.5GHz. Our
survey covers an area of approximately 0.9 square degrees. We achieve a nominal
sensitivity of Jy beam toward the field centre, finding 80
sources above a threshold. We derive the radio colour-colour
distribution for sources common to three surveys that cover the field and
identify three sources with strongly curved spectra - a high-frequency-peaked
source and two GHz-peaked-spectrum sources. The differential source count (i)
agrees well with previous deep radio source count, (ii) exhibits no evidence of
an emerging population of star-forming galaxies, down to a limit of 0.24mJy,
and (iii) disagrees with some models of the 15GHz source population.
However, our source count is in agreement with recent work that provides an
analytical correction to the source count from the SKADS Simulated Sky,
supporting the suggestion that this discrepancy is caused by an abundance of
flat-spectrum galaxy cores as-yet not included in source population models.Comment: 17 pages, 14 figures, 3 tables. Accepted for publication in MNRA
A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192
We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4)
in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows
both the microlensing parallax and finite source effects, and these can be
combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the
primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the
observational coverage of the planetary deviation is sparse and incomplete, and
the radius of the source was estimated without the benefit of a source star
color measurement. As a result, the 2-sigma limits on the mass ratio and finite
source measurements are weak. Nevertheless, the microlensing parallax signal
clearly favors a sub-stellar mass planetary host, and the measurement of finite
source effects in the light curve supports this conclusion. Adaptive optics
images taken with the Very Large Telescope (VLT) NACO instrument are consistent
with a lens star that is either a brown dwarf or a star at the bottom of the
main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations
will either confirm that the primary is a brown dwarf or detect the low-mass
lens star and enable a precise determination of its mass. In either case, the
lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a
companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is
probably the lowest mass exoplanet found to date, aside from the lowest mass
pulsar planet.Comment: Accepted for publication in the Astrophysical Journal. Scheduled for
the Sept. 1, 2008 issu
- …
