848 research outputs found
Finite-size scaling of the error threshold transition in finite population
The error threshold transition in a stochastic (i.e. finite population)
version of the quasispecies model of molecular evolution is studied using
finite-size scaling. For the single-sharp-peak replication landscape, the
deterministic model exhibits a first-order transition at , where is the probability of exact replication of a molecule of length , and is the selective advantage of the master string. For
sufficiently large population size, , we show that in the critical region
the characteristic time for the vanishing of the master strings from the
population is described very well by the scaling assumption \tau = N^{1/2} f_a
\left [ \left (Q - Q_c) N^{1/2} \right ] , where is an -dependent
scaling function.Comment: 8 pages, 3 ps figures. submitted to J. Phys.
Error threshold in finite populations
A simple analytical framework to study the molecular quasispecies evolution
of finite populations is proposed, in which the population is assumed to be a
random combination of the constiyuent molecules in each generation,i.e.,
linkage disequilibrium at the population level is neglected. In particular, for
the single-sharp-peak replication landscape we investigate the dependence of
the error threshold on the population size and find that the replication
accuracy at threshold increases linearly with the reciprocal of the population
size for sufficiently large populations. Furthermore, in the deterministic
limit our formulation yields the exact steady-state of the quasispecies model,
indicating then the population composition is a random combination of the
molecules.Comment: 14 pages and 4 figure
The Bone-Forming Effects of HIF-1α-Transduced BMSCs Promote Osseointegration with Dental Implant in Canine Mandible
The presence of insufficient bone volume remains a major clinical problem for dental implant placement to restore the oral function. Gene-transduced stem cells provide a promising approach for inducing bone regeneration and enhancing osseointegration in dental implants with tissue engineering technology. Our previous studies have demonstrated that the hypoxia-inducible factor-1α (HIF-1α) promotes osteogenesis in rat bone mesenchymal stem cells (BMSCs). In this study, the function of HIF-1α was validated for the first time in a preclinical large animal canine model in term of its ability to promote new bone formation in defects around implants as well as the osseointegration between tissue-engineered bone and dental implants. A lentiviral vector was constructed with the constitutively active form of HIF-1α (cHIF). The ectopic bone formation was evaluated in nude mice. The therapeutic potential of HIF-1α-overexpressing canine BMSCs in bone repair was evaluated in mesi-implant defects of immediate post-extraction implants in the canine mandible. HIF-1α mediated canine BMSCs significantly promoted new bone formation both subcutaneously and in mesi-implant defects, including increased bone volume, bone mineral density, trabecular thickness, and trabecular bone volume fraction. Furthermore, osseointegration was significantly enhanced by HIF-1α-overexpressing canine BMSCs. This study provides an important experimental evidence in a preclinical large animal model concerning to the potential applications of HIF-1α in promoting new bone formation as well as the osseointegration of immediate implantation for oral function restoration
An expression signature of the angiogenic response in gastrointestinal neuroendocrine tumours: correlation with tumour phenotype and survival outcomes.
BACKGROUND: Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) are heterogeneous with respect to biological behaviour and prognosis. As angiogenesis is a renowned pathogenic hallmark as well as a therapeutic target, we aimed to investigate the prognostic and clinico-pathological role of tissue markers of hypoxia and angiogenesis in GEP-NETs. METHODS: Tissue microarray (TMA) blocks were constructed with 86 tumours diagnosed from 1988 to 2010. Tissue microarray sections were immunostained for hypoxia inducible factor 1α (Hif-1α), vascular endothelial growth factor-A (VEGF-A), carbonic anhydrase IX (Ca-IX) and somatostatin receptors (SSTR) 1â5, Ki-67 and CD31. Biomarker expression was correlated with clinico-pathological variables and tested for survival prediction using KaplanâMeier and Cox regression methods. RESULTS: Eighty-six consecutive cases were included: 51% male, median age 51 (range 16â82), 68% presenting with a pancreatic primary, 95% well differentiated, 51% metastatic. Higher grading (P=0.03), advanced stage (P<0.001), high Hif-1α and low SSTR-2 expression (P=0.03) predicted for shorter overall survival (OS) on univariate analyses. Stage, SSTR-2 and Hif-1α expression were confirmed as multivariate predictors of OS. Median OS for patients with SSTR-2+/Hif-1α-tumours was not reached after median follow up of 8.8 years, whereas SSTR-2-/Hif-1α+ GEP-NETs had a median survival of only 4.2 years (P=0.006). CONCLUSION: We have identified a coherent expression signature by immunohistochemistry that can be used for patient stratification and to optimise treatment decisions in GEP-NETs independently from stage and grading. Tumours with preserved SSTR-2 and low Hif-1α expression have an indolent phenotype and may be offered less aggressive management and less stringent follow up
Parametric generation of second sound in superfluid helium: linear stability and nonlinear dynamics
We report the experimental studies of a parametric excitation of a second
sound (SS) by a first sound (FS) in a superfluid helium in a resonance cavity.
The results on several topics in this system are presented: (i) The linear
properties of the instability, namely, the threshold, its temperature and
geometrical dependencies, and the spectra of SS just above the onset were
measured. They were found to be in a good quantitative agreement with the
theory. (ii) It was shown that the mechanism of SS amplitude saturation is due
to the nonlinear attenuation of SS via three wave interactions between the SS
waves. Strong low frequency amplitude fluctuations of SS above the threshold
were observed. The spectra of these fluctuations had a universal shape with
exponentially decaying tails. Furthermore, the spectral width grew continuously
with the FS amplitude. The role of three and four wave interactions are
discussed with respect to the nonlinear SS behavior. The first evidence of
Gaussian statistics of the wave amplitudes for the parametrically generated
wave ensemble was obtained. (iii) The experiments on simultaneous pumping of
the FS and independent SS waves revealed new effects. Below the instability
threshold, the SS phase conjugation as a result of three-wave interactions
between the FS and SS waves was observed. Above the threshold two new effects
were found: a giant amplification of the SS wave intensity and strong resonance
oscillations of the SS wave amplitude as a function of the FS amplitude.
Qualitative explanations of these effects are suggested.Comment: 73 pages, 23 figures. to appear in Phys. Rev. B, July 1 st (2001
Alternate processing of Flt1 transcripts is directed by conserved cis-elements within an intronic region of FLT1 that reciprocally regulates splicing and polyadenylation
The vascular endothelial growth factor receptor, Flt1 is a transmembrane receptor co-expressed with an alternate transcript encoding a secreted form, sFlt1, that functions as a competitive inhibitor of Flt1. Despite shared transcription start sites and upstream regulatory elements, sFlt1 is in far greater excess of Flt1 in the human placenta. Phorbol myristic acid and dimethyloxalylglycine differentially stimulate sFlt1 compared to Flt1 expression in vascular endothelial cells and in cytotrophoblasts. An FLT1 minigene construct containing exon 13, 14 and the intervening region, recapitulates mRNA processing when transfected into COS-7, with chimeric intronic sFlt1 transcripts arising by intronic polyadenylation and other Flt1/sFlt1 transcripts by alternate splicing. Inclusion of exon 15 but not 14 had a modest stimulatory effect on the abundance of sFlt1. The intronic region containing the distal poly(A) signal sequences, when transferred to a heterologous minigene construct, inhibited splicing but only when cloned in sense orientation, consistent with the presence of a directional cis-element. Serial deletional and targeted mutational analysis of cis-elements within intron 13 identified intronic poly(A) signal sequences and adjacent cis-elements as the principal determinants of the relative ratio of intronic sFlt1 and spliced Flt1. We conclude that intronic signals reciprocally regulate splicing and polyadenylation and control sFlt1 expression
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a
centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The
value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08
^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical,
the second systematic and the third is associated to the ratio of fragmentation
fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/-
0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be
(3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table
Search for CP violation in decays
A model-independent search for direct CP violation in the Cabibbo suppressed
decay in a sample of approximately 370,000 decays is
carried out. The data were collected by the LHCb experiment in 2010 and
correspond to an integrated luminosity of 35 pb. The normalized Dalitz
plot distributions for and are compared using four different
binning schemes that are sensitive to different manifestations of CP violation.
No evidence for CP asymmetry is found.Comment: 13 pages, 8 figures, submitted to Phys. Rev.
Opposite-side flavour tagging of B mesons at the LHCb experiment
The calibration and performance of the oppositeside
flavour tagging algorithms used for the measurements
of time-dependent asymmetries at the LHCb experiment
are described. The algorithms have been developed using
simulated events and optimized and calibrated with
B
+ âJ/ÏK
+, B0 âJ/ÏK
â0 and B0 âD
ââ
Ό
+
ΜΌ decay
modes with 0.37 fbâ1 of data collected in pp collisions
at
â
s = 7 TeV during the 2011 physics run. The oppositeside
tagging power is determined in the B
+ â J/ÏK
+
channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty
is statistical and the second is systematic
Measurement of charged particle multiplicities in collisions at TeV in the forward region
The charged particle production in proton-proton collisions is studied with
the LHCb detector at a centre-of-mass energy of TeV in different
intervals of pseudorapidity . The charged particles are reconstructed
close to the interaction region in the vertex detector, which provides high
reconstruction efficiency in the ranges and
. The data were taken with a minimum bias trigger, only requiring
one or more reconstructed tracks in the vertex detector. By selecting an event
sample with at least one track with a transverse momentum greater than 1 GeV/c
a hard QCD subsample is investigated. Several event generators are compared
with the data; none are able to describe fully the multiplicity distributions
or the charged particle density distribution as a function of . In
general, the models underestimate the charged particle production
- âŠ