86 research outputs found

    Scavenging Behaviour of Red Deer Cervus elaphus Linnaeus, 1758 (Artiodactyla: Cervidae) in Eastern Spain

    Get PDF
    A male red deer was repeatedly observed scavenging in eastern Spain. This is the first time this behaviour of the red deer being recorded by means of camera traps. Scavenging behaviour of herbivores may have implications for wildlife biologists and managers

    A global view on the riparian forests with Salix neotricha and Populus alba in the Iberian Peninsula (Portugal and Spain)

    Get PDF
    Forests dominated by Salix neotricha, and Populus alba found along the mesoeutrophic rivers in the Iberian Peninsula, were studied. We discuss the floristic circumscription, chorology, and community segregation based on the available releveÂŽs of all Iberian riparian communities included in Populenion albae. Eleven formerly described communities were analyzed and due to original floristic combination, habitat features, and biogeographic scope, a new willow and poplar forest type is proposed within a well-defined biogeographical unit (Sadensean-Dividing Portuguese Subprovince): Clematido campaniflorae- Salicetum neotrichae. This syntaxon is found under a semi-hyperoceanic thermomediterranean to lower mesomediterranean, subhumid to humid bioclimate. Cluster analysis including all Iberian communities of Populenion albae shows a clear floristic segregation within the suballiance and confirms the originality of the new association. Furthermore, chemical characteristics of the water along some of the Portuguese watercourses with Populenion albae were studied and compared to the oligotrophic rivers occupied by Osmundo-Alnion communities. This study suggests that floristic separation between the communities of Populenion and Osmundo-Alnion is accompanied by a differentiation of the water trophic level

    On the origins of American Criollo pigs: A common genetic background with a lasting Iberian signature

    Get PDF
    American Criollo pigs are thought to descend mainly from those imported from the Iberian Peninsula starting in the late 15th century. Criollo pigs subsequently expanded throughout the Americas, adapting to very diverse environments, and possibly receiving influences from other origins. With the intensification of agriculture in the mid-20th century, cosmopolitan breeds largely replaced Criollo pigs, and the few remaining are mostly maintained by rural communities in marginal areas where they still play an important socio-economic and cultural role. In this study, we used 24 microsatellite markers in samples from 1715 pigs representing 46 breeds with worldwide distribution, including 17 American Criollo breeds, with the major focus of investigating their genetic diversity, structure and breed relationships. We also included representatives of the Iberian, Local British, Hungarian, Chinese and Commercial breeds, as well as Wild Boar, in order to investigate their possible influence in the genetic composition of Criollos. Our results show that, when compared with the other breeds, Criollo pigs present higher levels of genetic diversity, both in terms of allelic diversity and expected heterozygosity. The various analyses indicate that breed differentiation overall explains nearly 21% of the total genetic diversity. Criollo breeds showed their own identity and shared a common genetic background, tending to cluster together in various analyses, even though they differ from each other. A close relationship of Criollos with Iberian breeds was revealed by all the different analyses, and the contribution of Iberian breeds, particularly of the Celtic breeds, is still present in various Criollo breeds. No influence of Chinese breeds was detected on Criollos, but a few were influenced by Commercial breeds or by wild pigs. Our results confirm the uniqueness of American Criollo pigs and the role that Iberian breeds have played in their development. © 2021 Revidatti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas

    Get PDF
    Basal-like breast carcinoma is characterized by the expression of basal/ myoepithelial markers, undifferentiated phenotype, highly aggressive behaviour and frequent triple negative status (ESR , PR , Her2neu ). We have previously shown that epithelial–mesenchymal transition (EMT) occurs in basal-like breast tumours and identified Lysyl-oxidase-like 2 (LOXL2) as an EMT player and poor prognosis marker in squamous cell carcinomas. We now show that LOXL2 mRNA is overexpressed in basal-like human breast carcinomas. Breast carcinoma cell lines with basal-like phenotype show a specific cytoplasmic/perinuclear LOXL2 expression, and this subcellular distribution is significantly associated with distant metastatic incidence in basal-like breast carcinomas. LOXL2 silencing in basal-like carcinoma cells induces a mesenchymal-epithelial transition (MET) associated with a decrease of tumourigenicity and suppression of metastatic potential. Mechanistic studies indicate that LOXL2 maintains the mesenchymal phenotype of basal-like carcinoma cells by a novel mechanism involving transcriptional downregulation of Lgl2 and claudin1 and disorganization of cell polarity and tight junction complexes. Therefore, intracellular LOXL2 is a new candidate marker of basal-like carcinomas and a target to block metastatic dissemination of this aggressive breast tumour subtypeThis work was supported by grants from the Spanish Ministry of Science and Innovation, MICINN, (SAF2007-53061; SAF2010-21143; Consolider Ingenio CSD2007/00017, to AC; SAF2007-63075; SAF2010-20175 to GM-B); Fundacion Mutua Madrileña (2007, 2009 to AC and GM-B); Instituto de Salud Carlos III (ISCIII) (PI 080971 to JP), and Junta de Andalucıa (PI-0384/2007; PI 080971, P07-CVI- 03100 to JP). FS and A MartıŽn are recipients of JAE-pre and JAE-postdoc contracts from the Spanish Research Council (CSIC), respectively; MAC is founded by the RETICS (ISCIII)

    Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila?

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11104-014-2218-2Aims Responses to salt stress of two Gypsophila species that share territory, but with different ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. Theworking hypothesis is that salt tolerance shapes the presence of these species in their specific habitats. Methods Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation structure at the sampling site, seed germination and seedling development, growth and flowering, synthesis of proline and cation accumulation under artificial conditions of increasing salt stress and effect of PEG on germination and seedling development. Results Soil salinity was low at the all sampling points where the two species grow, but moisture was higher in the area of G. tomentosa. Differences were found in the species salt and drought tolerance. The different parameters tested did not show a clear pattern indicating the main role of salt tolerance in plant distribution. Conclusions G. tomentosa cannot be considered a true halophyte as previously reported because it is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats bordering salt marshes is a strategy to avoid plant competition and extreme water stressSoriano, P.; Moruno ManchĂłn, JF.; Boscaiu Neagu, MT.; Vicente Meana, Ó.; Hurtado, A.; Llinares Palacios, JV.; Estrelles, E. (2014). Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila?. Plant and Soil. 384(1-2):363-379. doi:10.1007/s11104-014-2218-2S3633793841-2Alonso MA (1996) Flora y vegetaciĂłn del Valle de Villena (Alicante). Instituto de Cultura Juan Gil-Albert, AlicanteAlvarado JJ, Ruiz JM, LĂłpez-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. Plant Physiol 156:612–616Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216Ashraf MY (2009) Salt tolerance mechanisms in some halophytes from Saudi Arabia and Egypt. Res J Agric Biol Sci 5:191–206Bates LS, Waldren RP, Tear LD (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207Ben-Gal A, Neori-Borochov H, Yermiyahu U, Shani U (2009) Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole plant response to salinity? Environ Exp Bot 65:232–237Biondi E (2011) Phytosociology today: Methodological and conceptual evolution. Plant Biosyst 145:19–29Boscaiu M, Bautista I, LidĂłn A, Llinares J, Lull C, Donat P, Mayoral O, Vicente O (2013a) Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiol Plant 35:2193–2204Boscaiu M, Llul C, Llinares J, Vicente O, Boira H (2013b) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849Breckle SW (1999) Halophytic and gypsophytic vegetation of the Ebro-Basin at Los Monegros. In: Melic A, Blasco-Zumeta J (eds) Manifiesto cientĂ­fico por Los Monegros, vol 24, Bol. SEA., pp 101–104Brenchley JL, Probert RJ (1998) Seed germination responses to some environmental factors in the sea grass Zoostera capricorni from eastern Australia. Aquat Bot 62:177–188Cañadas EM, Ballesteros M, Valle F, Lorite J (2013) Does gypsum influence seed germination? Turk J Bot 38:141–147Chen Z, Cuin TA, Zhou M et al (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255Chutipaijit S, Cha-Um S, Sompornailin K (2009) Differential accumulation of proline and flavonoids in Indica rice varieties against salinity. Pak J Bot 41:2497–2506Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769Debussche M, Thompson JD (2003) Habitat differentiation between two closely related Mediterranean plant species, the endemic Cyclamen balearicum and the widespread C. repandum. Acta Oecol 24:35–45Eskandari H, Kazemi K (2011) Germination and seedling properties of different wheat cultivars under salinity conditions. Not Sci Biol 3:130–134FAO (2006) Guidelines for soil descriptions, 5th edn. Food and Agricultural Organization of United Nation, RomeFerrandis P, Herranz JM, Copete MA (2005) CaracterizaciĂłn florĂ­stica y edĂĄfica de las estepas yesosas de Castilla-La Mancha. Invest Agrar Sist Recur For 14:195–216Flowers TJ, Hall JL (1978) Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23:310–321Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–335GarcĂ­a-Fuentes A, Salazar C, Torres JA, Cano E, Valle F (2001) Review of communities of Lygeum spartum L. in the south-eastern Iberian Peninsula (western Mediterranean). J Arid Environ 48:323–339GĂ©hu JM (2006) Dictionnaire de Sociologie et SynĂ©cologie VĂ©gĂ©tales. J. Cramer, Berlin-Stuttgart, p 899GĂ©hu JM (2011) On the opportunity to celebrate the centenary of modern phytosociology in 2010. Plant Biosyst 145(suppl):4–8Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. Canberra, Australia. CAB International, The Australian National University, WallingfordGrigore MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19Grigore MN, Villanueva M, Boscaiu M, Vicente O (2012a) Do halophytes really require salts for their growth and development? An experimental approach mitigation of salt stress-induced inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not Sci Biol 4:23–29Grigore MN, Boscaiu M, Llinares J, Vicente O (2012b) Mitigation of salt stressed-induced Inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not Bot Horti Agrobo 40:58–66Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102Ishikawa SI, Kachi N (2000) Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats. Ecol Res 15:241–247Kebreab E, Murdoch AJ (1999) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J Exp Bot 50:655–664Khan MA (2002) Halophyte seed germination: Success and Pitfalls. In: Hegazi AM, El-Shaer HM, El-Demerdashe S et al (eds) International symposium on optimum resource utilization in salt affected ecosystems in arid and semi arid regions. Desert Research Centre, Cairo, pp 346–358Khan MA, Gul B, Weber DJ (2000) Germination responses of Salicornia rubra to temperature and salinity. J Arid Environ 45:207–214Khan A, Rayner GD (2003) Robustness to non-normality of common tests for the many-sample location problem. J Appl Math Decis Sci 7:187–206LidĂłn A, Boscaiu M, Collado F, Vicente O (2009) Soil requirements of three salt tolerant, endemic species from south-east Spain. Not Bot Horti Agrobo 37:64–70LĂłpez GonzĂĄlez G (1990) Gypsohila L. In: Castroviejo S, LaĂ­nz M, LĂłpez G et al (eds) Flora IbĂ©rica 2. Real JardĂ­n BotĂĄnico, Madrid, pp 408–415Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218Madidi S, Baroudi B, Ameur FB (2004) Effects of salinity on germination and early growth of barley (Hordeum vulgare L.) cultivars. Int J Agric Biol 6:767–770Marchal FM, LendĂ­nez ML, Salazar C, Torres JA (2008) Aportaciones al conocimiento de la vegetaciĂłn gispsĂ­cola en el occidente de la provincia de Granada (sur de España). Lazaroa 29:95–100MĂ©dail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from southern France and Corsica: implications for biodiversity conservation. Biol Conserv 80:269–281Meyer SE (1986) The ecology of gypsophile endemism in the Eastern Mojave desert. Ecology 67:1303–1313Moruno F, Soriano P, Oscar V, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 9:18–23Mota JF, SĂĄnchez GĂłmez P, Merlo Calvente ME, CatalĂĄn RodrĂ­guez P, Laguna Lumbreras E, de la Cruz RM, Navarro Reyes FB, Marchal Gallardo F, BartolomĂ© Esteban C, MartĂ­nez Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, MartĂ­nez HernĂĄndez F, Garrido Becerra JA, PĂ©rez GarcĂ­a FJ (2009) AproximaciĂłn a la checklist de los gipsĂłfitos ibĂ©ricos. An Biol 31:71–80Mota JF, Sola AJ, JimĂ©nez-SĂĄnchez ML, PĂ©rez-GarcĂ­a F, Merlo ME (2004) Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers Conserv 13:1797–1808Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250Palacio S, Escudero A, Montserrat-MartĂ­ G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343Peinado M, MartĂ­nez-Parras JM (1982) Sobre la posiciĂłn fitosociolĂłgica de Gypsophila tomentosa L. Lazaroa 4:129–140Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311Rasband WS (1997–2012) ImageJ. U S National Institutes of Health. http://rsb.info.nih.gov/ij/ , Bethesda, MarylandRivas-MartĂ­nez S (2005) Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst 139:135–144Rivas-MartĂ­nez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org . Accessed 1 July 2013Rivas-MartĂ­nez S, FernĂĄndez-GonzĂĄlez F, Loidi J, LousĂŁ M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot 14:5–341SalmerĂłn-SĂĄnchez E, MartĂ­nez-Nieto MI, MartĂ­nez-HernĂĄndez F, Garrido-Becerra JA, Mendoza-FernĂĄndez AJ, Gil de Carrasco C, Ramos-Miras JJ, Lozano R, Merlo ME, Mota JF (2014) Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates: dolomite and gypsum. Plant Soil 374:233–250Saradhi P, Alia P, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environ Exp Bot 77:63–76Tipirdamaz R, Gagneul D, Duhaze C, Ainouche A, Monnier C, Ozkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607USDA-ARS (2008) Research databases. Bibliography on salt tolerance. George E. Brown, Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA. http://www.ars.usda.gov/Services/docs.htm?docid=8908USSL Staff (1954) Diagnosis and improvement of saline and alkali soils. US Department of Agriculture Handbook no. 60, 160 ppVicente O, Boscaiu M, Naranjo M, Estrelles E, BellĂ©s JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–48

    Making waves: collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice. [Abstract copyright: Copyright © 2021 Elsevier Ltd. All rights reserved.

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    El derecho del trabajo y de la seguridad social en España en 2014

    Get PDF
    Este documento intenta reflejar algunos de los principales cambios y novedades del ordenamiento laboral español en 2014, levantando acta de cĂłmo la mutabilidad de nuestro Derecho del Trabajo es imparable. Este informe, consciente de ello, ofrece una selecciĂłn de elementos esenciales, a juicio de sus autores, especialistas en cada una de las materias, encuadrados en la SecciĂłn Juvenil de la AsociaciĂłn Española de Derecho del Trabajo y de la Seguridad Social. En Ă©l, conforme a la organizaciĂłn de dicha SecciĂłn en grupos de trabajo, se abordan las novedades mĂĄs relevantes en materia de derechos fundamentales inespecĂ­ficos, contrataciĂłn laboral, vicisitudes del contrato de trabajo, Derecho colectivo, conciliaciĂłn y corresponsabilidad, protecciĂłn social y prevenciĂłn de riesgos laborales. This paper tries to show some of the many changes and novelties in Spanish Labour Law during 2014, drawing up a record of the unstoppable character of our Labour legal system. This report offers a selection of essential elements, according to its authors, all of them specialists in each one of the subjects, being part of the Young Scholars’ Section of the Spanish Association for Labour and Social Security Law. According to the organization of the said Section in working groups, we can find novelties concerning unspecific fundamental rights, work contracts, the life of the work contract and collective Labour Law, work-life balance and co responsibility, social protection and occupational risk prevention

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore