388 research outputs found
Effect of Cluster Formation on Isospin Asymmetry in the Liquid-Gas Phase Transition Region
Nuclear matter within the liquid-gas phase transition region is investigated
in a mean-field two-component Fermi-gas model. Following largely analytic
considerations, it is shown that: (1) Due to density dependence of asymmetry
energy, some of the neutron excess from the high-density phase could be
expelled into the low-density region. (2) Formation of clusters in the gas
phase tends to counteract this trend, making the gas phase more liquid-like and
reducing the asymmetry in the gas phase. Flow of asymmetry between the
spectator and midrapidity region in reactions is discussed and a possible
inversion of the flow direction is indicated.Comment: 9 pages,3 figures, RevTe
Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059
We have determined the mineralogical composition of dust in the Broad
Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy
obtained with the Spitzer Space Telescope. From spectral fitting of the solid
state features, we find evidence for Mg-rich amorphous silicates with olivine
stoichiometry, as well as the first detection of corundum (Al_2O_3) and
periclase (MgO) in quasars. This mixed composition provides the first direct
evidence for a clumpy density structure of the grain forming region. The
silicates in total encompass 56.5% of the identified dust mass, while corundum
takes up 38 wt.%. Depending on the choice of continuum, a range of mass
fractions is observed for periclase ranging from 2.7% in the most conservative
case to 9% in a less constrained continuum. In addition, we identify a feature
at 11.2 micron as the crystalline silicate forsterite, with only a minor
contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate
fraction requires high temperatures such as those found in the immediate quasar
environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure
On the evolution of the molecular line profiles induced by the propagation of C-shock waves
We present the first results of the expected variations of the molecular line
emission arising from material recently affected by C-shocks (shock
precursors). Our parametric model of the structure of C-shocks has been coupled
with a radiative transfer code to calculate the molecular excitation and line
profiles of shock tracers such as SiO, and of ion and neutral molecules such as
H13CO+ and HN13C, as the shock propagates through the unperturbed medium. Our
results show that the SiO emission arising from the early stage of the magnetic
precursor typically has very narrow line profiles slightly shifted in velocity
with respect to the ambient cloud. This narrow emission is generated in the
region where the bulk of the ion fluid has already slipped to larger velocities
in the precursor as observed toward the young L1448-mm outflow. This strongly
suggests that the detection of narrow SiO emission and of an ion enhancement in
young shocks, is produced by the magnetic precursor of C-shocks. In addition,
our model shows that the different velocity components observed toward this
outflow can be explained by the coexistence of different shocks at different
evolutionary stages, within the same beam of the single-dish observations.Comment: 7 pages, 4 figures, accepted for publication in Ap
Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition
The glaciation of Antarctica at the Eocene–Oligocene transition (approx. 34 million years ago) was a major shift in the Earth’s climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere–ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet–climate simulations to properly represent and investigate feedback processes acting on these time scales
Mid-infrared spectra of PAH emission in Herbig AeBe stars
We present spectra of four Herbig AeBe stars obtained with the Infrared
Spectrograph (IRS). on the Spitzer Space Telescope. All four of the sources
show strong emission from polycyclic aromatic hydrocarbons (PAHs), with the 6.2
um emission feature shifted to 6.3 um and the strongest C-C skeletal-mode
feature occuring at 7.9 um instead of at 7.7 um as is often seen. Remarkably,
none of the four stars have silicate emission. The strength of the 7.9 um
feature varies with respect to the 11.3 um feature among the sources,
indicating that we have observed PAHs with a range of ionization fractions. The
ionization fraction is higher for systems with hotter and brighter central
stars. Two sources, HD 34282 and HD 169142, show emission features from
aliphatic hydrocarbons at 6.85 and 7.25 um. The spectrum of HD 141569 shows a
previously undetected emission feature at 12.4 um which may be related to the
12.7 um PAH feature. The spectrum of HD 135344, the coolest star in our sample,
shows an unusual profile in the 7-9 um region, with the peak emission to the
red of 8.0 um and no 8.6 um PAH feature.Comment: Accepted by ApJ 23 June, 2005, 8 pages (emulateapj), 5 figures (3 in
color
Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder
The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new perspective on the role of mutations in disease, with implications for improving predictors of the functional impact of missense mutations
The shape and composition of interstellar silicate grains
We investigate the composition and shape distribution of silicate dust grains
in the interstellar medium. The effect of the amount of magnesium in the
silicate lattice is studied. We fit the spectral shape of the interstellar 10
mu extinction feature as observed towards the galactic center. We use very
irregularly shaped coated and non-coated porous Gaussian Random Field particles
as well as a statistical approach to model shape effects. For the dust
materials we use amorphous and crystalline silicates with various composition
and SiC. The results of our analysis of the 10 mu feature are used to compute
the shape of the 20 mu silicate feature and to compare this with observations.
By using realistic particle shapes we are, for the first time, able to derive
the magnesium fraction in interstellar silicates. We find that the interstellar
silicates are highly magnesium rich (Mg/(Fe+Mg)>0.9) and that the stoichiometry
lies between pyroxene and olivine type silicates. This composition is not
consistent with that of the glassy material found in GEMS in interplanetary
dust particles indicating that these are, in general, not unprocessed remnants
from the interstellar medium. Also, we find a significant fraction of SiC
(~3%). We discuss the implications of our results for the formation and
evolutionary history of cometary and circumstellar dust. We argue that the fact
that crystalline silicates in cometary and circumstellar grains are almost
purely magnesium silicates is a natural consequence of our findings that the
amorphous silicates from which they were formed were already magnesium rich.Comment: Accepted for publication in A&
Constraint methods for determining pathways and free energy of activated processes
Activated processes from chemical reactions up to conformational transitions
of large biomolecules are hampered by barriers which are overcome only by the
input of some free energy of activation. Hence, the characteristic and
rate-determining barrier regions are not sufficiently sampled by usual
simulation techniques. Constraints on a reaction coordinate r have turned out
to be a suitable means to explore difficult pathways without changing potential
function, energy or temperature. For a dense sequence of values of r, the
corresponding sequence of simulations provides a pathway for the process. As
only one coordinate among thousands is fixed during each simulation, the
pathway essentially reflects the system's internal dynamics. From mean forces
the free energy profile can be calculated to obtain reaction rates and insight
in the reaction mechanism. In the last decade, theoretical tools and computing
capacity have been developed to a degree where simulations give impressive
qualitative insight in the processes at quantitative agreement with
experiments. Here, we give an introduction to reaction pathways and
coordinates, and develop the theory of free energy as the potential of mean
force. We clarify the connection between mean force and constraint force which
is the central quantity evaluated, and discuss the mass metric tensor
correction. Well-behaved coordinates without tensor correction are considered.
We discuss the theoretical background and practical implementation on the
example of the reaction coordinate of targeted molecular dynamics simulation.
Finally, we compare applications of constraint methods and other techniques
developed for the same purpose, and discuss the limits of the approach
Three-micron spectra of AGB stars and supergiants in nearby galaxies
The dependence of stellar molecular bands on the metallicity is studied using
infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and
M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and
in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for
oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB
stars. The equivalent width of acetylene is found to be high even at low
metallicity. The high C2H2 abundance can be explained with a high
carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast,
the HCN equivalent width is low: fewer than half of the extra-galactic carbon
stars show the 3.5micron HCN band, and only a few LMC stars show high HCN
equivalent width. HCN abundances are limited by both nitrogen and carbon
elemental abundances. The amount of synthesized nitrogen depends on the initial
mass, and stars with high luminosity (i.e. high initial mass) could have a high
HCN abundance. CH bands are found in both the extra-galactic and Galactic
carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one
possible detection in a low quality spectrum. The limits on the equivalent
widths of the SiO bands are below the expectation of up to 30angstrom for LMC
metallicity. Several possible explanations are discussed. The observations
imply that LMC and SMC carbon stars could reach mass-loss rates as high as
their Galactic counterparts, because there are more carbon atoms available and
more carbonaceous dust can be formed. On the other hand, the lack of SiO
suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich
stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&
- …
