We investigate the composition and shape distribution of silicate dust grains
in the interstellar medium. The effect of the amount of magnesium in the
silicate lattice is studied. We fit the spectral shape of the interstellar 10
mu extinction feature as observed towards the galactic center. We use very
irregularly shaped coated and non-coated porous Gaussian Random Field particles
as well as a statistical approach to model shape effects. For the dust
materials we use amorphous and crystalline silicates with various composition
and SiC. The results of our analysis of the 10 mu feature are used to compute
the shape of the 20 mu silicate feature and to compare this with observations.
By using realistic particle shapes we are, for the first time, able to derive
the magnesium fraction in interstellar silicates. We find that the interstellar
silicates are highly magnesium rich (Mg/(Fe+Mg)>0.9) and that the stoichiometry
lies between pyroxene and olivine type silicates. This composition is not
consistent with that of the glassy material found in GEMS in interplanetary
dust particles indicating that these are, in general, not unprocessed remnants
from the interstellar medium. Also, we find a significant fraction of SiC
(~3%). We discuss the implications of our results for the formation and
evolutionary history of cometary and circumstellar dust. We argue that the fact
that crystalline silicates in cometary and circumstellar grains are almost
purely magnesium silicates is a natural consequence of our findings that the
amorphous silicates from which they were formed were already magnesium rich.Comment: Accepted for publication in A&