706 research outputs found

    The reaction npppπ{n} {p} \to {p} {p} \pi^{-} from threshold up to 570 MeV

    Full text link
    The reaction npppπ{n} {p} \to {p} {p} \pi^{-} has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp(1S0^{1}{S}_{0}) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction ppppπ0{p}{p} \to {p}{p} \pi^{0}. At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section σ(npppπ)\sigma({n}{p} \to {\rm p}{p} \pi^{-}), the isoscalar cross section σ01\sigma_{01} has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. Note: Due to a coding error, the differential cross sections dσ/dMpp{d \sigma}/{d M_{pp}} as shown in Fig. 9 are too small by a factor of two, and inn Table 3 the differential cross sections dσ/dΩπ{d \sigma}/{d \Omega_{\pi}^{*}} are too large by a factor of 10/2π10/2\pi. The integrated cross sections and all conclusions remain unchanged. A corresponding erratum has been submitted and accepted by European Physics Journal.Comment: 18 pages, 16 figure

    Analysing powers for the reaction npppπ\vec{\rm n} {\rm p} \to {\rm p} {\rm p} \pi^{-} and for np elastic scattering from 270 to 570 MeV

    Full text link
    The analysing power of the reaction npppπ{\rm n}{\rm p} \to {\rm p}{\rm p} \pi^{-} for neutron energies between threshold and 570 MeV has been determined using a transversely polarised neutron beam at PSI. The reaction has been studied in a kinematically complete measurement using a time-of-flight spectrometer with large acceptance. Analysing powers have been determined as a function of the c.m. pion angle in different regions of the proton-proton invariant mass. They are compared to other data from the reactions npppπ{\rm n}{\rm p} \to {\rm p}{\rm p} \pi^{-} and ppppπ0{{\rm p}{\rm p} \to {\rm p}{\rm p} \pi^{0}}. The np elastic scattering analysing power was determined as a by-product of the measurements.Comment: 12 pages, 6 figures, subitted to EPJ-

    A compact statistical model of the song syntax in Bengalese finch

    Get PDF
    Songs of many songbird species consist of variable sequences of a finite number of syllables. A common approach for characterizing the syntax of these complex syllable sequences is to use transition probabilities between the syllables. This is equivalent to the Markov model, in which each syllable is associated with one state, and the transition probabilities between the states do not depend on the state transition history. Here we analyze the song syntax in a Bengalese finch. We show that the Markov model fails to capture the statistical properties of the syllable sequences. Instead, a state transition model that accurately describes the statistics of the syllable sequences includes adaptation of the self-transition probabilities when states are repeatedly revisited, and allows associations of more than one state to the same syllable. Such a model does not increase the model complexity significantly. Mathematically, the model is a partially observable Markov model with adaptation (POMMA). The success of the POMMA supports the branching chain network hypothesis of how syntax is controlled within the premotor song nucleus HVC, and suggests that adaptation and many-to-one mapping from neural substrates to syllables are important features of the neural control of complex song syntax

    The Groove Enhancement Machine (GEM): A multi-person adaptive metronome to manipulate sensorimotor synchronization and subjective enjoyment

    Get PDF
    Synchronization of movement enhances cooperation and trust between people. However, the degree to which individuals can synchronize with each other depends on their ability to perceive the timing of others’ actions and produce movements accordingly. Here, we introduce an assistive device—a multi-person adaptive metronome—to facilitate synchronization abilities. The adaptive metronome is implemented on Arduino Uno circuit boards, allowing for negligible temporal latency between tapper input and adaptive sonic output. Across five experiments—two single-tapper, and three group (four tapper) experiments, we analyzed the effects of metronome adaptivity (percent correction based on the immediately preceding tap-metronome asynchrony) and auditory feedback on tapping performance and subjective ratings. In all experiments, tapper synchronization with the metronome was significantly enhanced with 25–50% adaptivity, compared to no adaptation. In group experiments with auditory feedback, synchrony remained enhanced even at 70–100% adaptivity; without feedback, synchrony at these high adaptivity levels returned to near baseline. Subjective ratings of being in the groove, in synchrony with the metronome, in synchrony with others, liking the task, and difficulty all reduced to one latent factor, which we termed enjoyment. This same factor structure replicated across all experiments. In predicting enjoyment, we found an interaction between auditory feedback and metronome adaptivity, with increased enjoyment at optimal levels of adaptivity only with auditory feedback and a severe decrease in enjoyment at higher levels of adaptivity, especially without feedback. Exploratory analyses relating person-level variables to tapping performance showed that musical sophistication and trait sadness contributed to the degree to which an individual differed in tapping stability from the group. Nonetheless, individuals and groups benefitted from adaptivity, regardless of their musical sophistication. Further, individuals who tapped less variably than the group (which only occurred ∼25% of the time) were more likely to feel “in the groove.” Overall, this work replicates previous single person adaptive metronome studies and extends them to group contexts, thereby contributing to our understanding of the temporal, auditory, psychological, and personal factors underlying interpersonal synchrony and subjective enjoyment during sensorimotor interaction. Further, it provides an open-source tool for studying such factors in a controlled way

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Full text link
    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos corrected, new section added, figures regrouped. Accepted for publication in JINS

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering

    Full text link
    First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.Comment: 6 pages, 2 figure

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure
    corecore