377 research outputs found

    The Rapid Outbursting Star GM Cep: An EX-or in Tr 37?

    Full text link
    We present optical, IR and millimeter observations of the solar-type star 13-277, also known as GM Cep, in the 4 Myr-old cluster Tr 37. GM Cep experiences rapid magnitude variations of more than 2 mag at optical wavelengths. We explore the causes of the variability, which seem to be dominated by strong increases in the accretion, being similar to EX-or episodes. The star shows high, variable accretion rates (up to ~10−6^{-6} Msun/yr), signs of powerful winds, and it is a very fast rotator (Vsini~43 km/s). Its strong mid-IR excesses reveal a very flared disk and/or a remnant envelope, most likely out of hydrostatic equilibrium. The 1.3 millimeter fluxes suggest a relatively massive disk (Mdisk~0.1 Msun). Nevertheless, the millimeter mass is not enough to sustain increased accretion episodes over large timescales, unless the mass is underestimated due to significant grain growth. We finally explore the possibility of GM Cep having a binary companion, which could trigger disk instabilities producing the enhanced accretion episodes.Comment: 43 pages, including 10 figures, ApJ in pres

    GRAVITY: getting to the event horizon of Sgr A*

    Full text link
    We present the second-generation VLTI instrument GRAVITY, which currently is in the preliminary design phase. GRAVITY is specifically designed to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We have identified the key design features needed to achieve this goal and present the resulting instrument concept. It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near infrared wavefront sensing adaptive optics; fringe tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that the planned design matches the scientific needs; in particular that 10 microarcsecond astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc

    A benchmark for multi-conjugated AO: VLT-MAD observations of the young massive cluster Trumpler 14

    Full text link
    MAD is the first multi-conjugated adaptive optics system at the VLT. We present H and Ks observations of the young massive cluster Trumpler 14 revealing the power of MCAO systems by providing a homogeneous Strehl ratio over a large field of view. Mean Strehl ratios of 6.0 and 5.9 per cent with maximum Strehl ratios of 9.8 and 12.6 per cent in H and Ks, respectively, show significant improvement of the spatial PSF stability compared to single-conjugated adaptive optics systems. Photometry of our observations cover a dynamic range of ~10 mag including 2-3 times more sources than comparable seeing-limited observations. The colour-magnitude diagram reveals that the massive cluster originated in a recent starburst-like event 1+/-0.5 Myr ago. We tentatively detect hints for an older population of 3 Myr suggesting that low intensity star formation might have been going on in the HII region for a few Myr. We derive the luminosity function and mass function between 0.1 M_sun and 3.2 M_sun and identify a change of the power law slope of the mass function at m_c~0.53(+0.12/-0.10) M_sun. The MF appears shallow with power law slopes of Gamma1=-0.50+/-0.11 above m_c and Gamma2=0.63+/-0.32 below m_c.Comment: Accepted for publication in MNRAS, 12 pages, 10 figures, 2 table

    Euclid: the selection of quiescent and star-forming galaxies using observed colours

    Get PDF
    The Euclid mission will observe well over a billion galaxies out to z ∌ 6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well-known colour techniques such as the ‘UVJ’ diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u − VIS) and (VIS − J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above ∌70 per cent and with less than 15 per cent contamination at redshifts in the range 0.75 65 per cent completeness level and contamination below 20 per cent at 1 < z < 2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only ∌20 per cent complete at z < 3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available

    Euclid: the selection of quiescent and star-forming galaxies using observed colours

    Get PDF
    The Euclid mission will observe well over a billion galaxies out to z ∌ 6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well-known colour techniques such as the ‘UVJ’ diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u − VIS) and (VIS − J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above ∌70 per cent and with less than 15 per cent contamination at redshifts in the range 0.75 65 per cent completeness level and contamination below 20 per cent at 1 < z < 2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only ∌20 per cent complete at z < 3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available

    Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

    Get PDF
    Context. Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. Aims. In this work, we evaluate the impact of the reduced shear approximation and magnification bias on information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities in high-magnification regions. Methods. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculated the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. To do so, we employed the Fisher matrix formalism, and included the impact of the super-sample covariance. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach. Results. These effects cause significant biases in Ωm, Ύ8, ns, ΩDE, w0, and wa of -0:53Ύ, 0:43Ύ, -0:34Ύ, 1:36Ύ, -0:68Ύ, and 1:21Ύ, respectively. We then show that these lensing biases interact with another systematic effect: The intrinsic alignment of galaxies. Accordingly, we have developed the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant

    Euclid preparation: XXIV. Calibration of the halo mass function in (?)CDM cosmologies

    Get PDF
    Euclid s photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einsteinde Sitter and standard CDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the CDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future massobservation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference

    Euclid: Forecast constraints on consistency tests of the ∧cDM model

    Get PDF
    Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics. Aims. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the canonical cosmological constant ∧ and the cold dark matter (∧ CDM) model in the redshift range 0 < 1.8. Methods. We considered both currently available data and simulated Euclid and external data products based on a ∧CDM fiducial model, an evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaßtre-Tolman-Bondi model with a cosmological constant ∧, and carried out two separate but complementary analyses: A machine learning reconstruction of the null tests based on genetic algorithms, and a theory-Agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions about any particular model. Results. We find that in combination with external probes, Euclid can improve current constraints on null tests of the ∧CDM by approximately a factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also find that in certain cases, the parametric approach may be biased against or missing some features of models far from ∧CDM. Conclusions. Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current cosmological paradigm

    Euclid: Forecasts for k-cut 3×2 Point Statistics

    Get PDF
    Modelling uncertainties at small scales, i.e. high k in the power spectrum P(k), due to baryonic feedback, nonlinear structure growth and the fact that galaxies are biased tracers poses a significant obstacle to fully leverage the constraining power of the Euclid wide-field survey. k-cut cosmic shear has recently been proposed as a method to optimally remove sensitivity to these scales while preserving usable information. In this paper we generalise the k-cut cosmic shear formalism to 3×2 point statistics and estimate the loss of information for different k-cuts in a 3×2 point analysis of the Euclid data. Extending the Fisher matrix analysis of Euclid Collaboration: Blanchard et al. (2019), we assess the degradation in constraining power for different k-cuts. We find that taking a k-cut at 2.6 h Mpc⁻Âč yields a dark energy Figure of Merit (FOM) of 1018. This is comparable to taking a weak lensing cut at ℓ=5000 and a galaxy clustering and galaxy-galaxy lensing cut at ℓ=3000 in a traditional 3×2 point analysis. We also find that the fraction of the observed galaxies used in the photometric clustering part of the analysis is one of the main drivers of the FOM. Removing 50% (90%) of the clustering galaxies decreases the FOM by 19% (62%). Given that the FOM depends so heavily on the fraction of galaxies used in the clustering analysis, extensive efforts should be made to handle the real-world systematics present when extending the analysis beyond the luminous red galaxy (LRG) sample
    • 

    corecore