459 research outputs found
DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2
The repair of DNA double-strand breaks (DSBs) by homologous recombination requires processing of broken ends. For repair to start, the DSB must first be resected to generate a 3′-single-stranded DNA (ssDNA) overhang, which becomes a substrate for the DNA strand exchange protein, Rad51 (ref. 1). Genetic studies have implicated a multitude of proteins in the process, including helicases, nucleases and topoisomerases. Here we biochemically reconstitute elements of the resection process and reveal that it requires the nuclease Dna2, the RecQ-family helicase Sgs1 and the ssDNA-binding protein replication protein-A (RPA). We establish that Dna2, Sgs1 and RPA constitute a minimal protein complex capable of DNA resection in vitro. Sgs1 helicase unwinds the DNA to produce an intermediate that is digested by Dna2, and RPA stimulates DNA unwinding by Sgs1 in a species-specific manner. Interestingly, RPA is also required both to direct Dna2 nucleolytic activity to the 5′-terminated strand of the DNA break and to inhibit 3′ to 5′ degradation by Dna2, actions that generate and protect the 3′-ssDNA overhang, respectively. In addition to this core machinery, we establish that both the topoisomerase 3 (Top3) and Rmi1 complex and the Mre11–Rad50–Xrs2 complex (MRX) have important roles as stimulatory components. Stimulation of end resection by the Top3–Rmi1 heterodimer and the MRX proteins is by complex formation with Sgs1 (refs 5, 6), which unexpectedly stimulates DNA unwinding. We suggest that Top3–Rmi1 and MRX are important for recruitment of the Sgs1–Dna2 complex to DSBs. Our experiments provide a mechanistic framework for understanding the initial steps of recombinational DNA repair in eukaryotes
The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression
The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant mice (Nbs1mid mice), which harbor mutations in the Mre11 interaction domain of Nbs1. Nbs1mid alleles that abolished interaction were incompatible with viability. Conversely, a 108-amino-acid Nbs1 fragment comprising the Mre11 interface was sufficient to rescue viability and ATM activation in cultured cells and support differentiation of hematopoietic cells in vivo. These data indicate that the essential role of Nbs1 is via its interaction with Mre11 and that most of the Nbs1 protein is dispensable for Mre11 complex functions and suggest that Mre11 and Rad50 directly activate ATM
Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3
double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday junction (HJ) migration. Rmi1 serves to stimulate DNA decatenation, removing the last linkages between the repaired and template DNA molecules. Dissolution of a dHJ is a highly efficient and concerted alternative to nucleolytic resolution that prevents crossing over of chromosomes during recombinational DNA repair in mitotic cells and thereby contributes to genomic integrity
BLM and RMI1 alleviate RPA inhibition of topoIIIα decatenase activity
RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA
In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6
R.E.M. and M.N. thank the Royal Society and the E.P.S.R.C. (Grants EP/L014475/1, EP/K025112/1 and EP/K005499/1) for funding work in this area. R.E.M. and J.Č. acknowledge the Czech Science Foundation for the project P106/12/G015 and OP VVV "Excellent Research Teams", project No. CZ.02.1.01/0.0/0.0/15_003/0000417 - CUCAM. S.E.A. would like to thank the ERC (EU FP7 Consolidator Grant 614290 “EXONMR”) and the Royal Society and Wolfson Foundation for a merit award. The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC (contract reference PR140003), as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF). W.A.S. and D.S.W. acknowledge the Research Council of Norway and NOTUR are acknowledged for providing the computer time at the Norwegian supercomputer facilities (under the project number NN2875k).The assembly–disassembly–organization–reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6.PostprintPeer reviewe
Regulatory control of DNA end resection by Sae2 phosphorylation
DNA end resection plays a critical function in DNA double-strand break repair pathway choice. Resected DNA ends are refractory to end-joining mechanisms and are instead channeled to homology-directed repair. Using biochemical, genetic, and imaging methods, we show that phosphorylation of Saccharomyces cerevisiae Sae2 controls its capacity to promote the Mre11-Rad50-Xrs2 (MRX) nuclease to initiate resection of blocked DNA ends by at least two distinct mechanisms. First, DNA damage and cell cycle-dependent phosphorylation leads to Sae2 tetramerization. Second, and independently, phosphorylation of the conserved C-terminal domain of Sae2 is a prerequisite for its physical interaction with Rad50, which is also crucial to promote the MRX endonuclease. The lack of this interaction explains the phenotype of rad50S mutants defective in the processing of Spo11-bound DNA ends during meiotic recombination. Our results define how phosphorylation controls the initiation of DNA end resection and therefore the choice between the key DNA double-strand break repair mechanisms
Human BRCA1-BARD1 ubiquitin ligase activity counters chromatin barriers to DNA resection
The opposing activities of 53BP1 and BRCA1 influence pathway choice of DNA double-strand break repair. How BRCA1 counters the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2~ubiquitin. We demonstrate that BRCA1-BARD1’s ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitylation by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1 deficient cells. We show BRCA1-BARD1 function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin, optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning and the need for SMARCAD1 in Olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus BRCA1- BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair
Synthesis of ‘unfeasible’ zeolites
Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum—why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such unfeasible’ zeolites, IPC-9 and IPC-10, through the assembly–disassembly–organization–reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications
Balancing repair and tolerance of DNA damage caused by alkylating agents
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity
Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents
- …
