67 research outputs found

    Condensation and partial pressure change as a major cause of airflow: experimental evidence

    Get PDF
    The dominant model of atmospheric circulation is based on the notion that hot air rises, creating horizontal winds. A second major driver has been proposed in the biotic pump theory (BPT), by which intense condensation is the prime cause of surface winds from ocean to land. Critics of the BPT argue that air movement resulting from condensation is isotropic. This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8m-tall closed-system structure. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. The assumption that condensation of water vapour is always isotropic is therefore incorrect

    Further experimental evidence that condensation is a major cause of airflow

    Get PDF
    This paper further explores the physics of water condensation, using an experimental structure designed for that purpose. The data show a highly significant correlation (R2 >0.94, p value <0.001) between observed airflows and partial pressure changes from condensation, when the results of different experiments are pooled. Changes in air density on cooling provide insufficient energy to account for the airflow. The finding is that the kinetic energy of the chilled air falls short by an order of magnitude, even to move a relatively small proportion of the 20 kg of air contained within the structure. Meanwhile the physics of condensation indicate a surplus of kinetic energy is made available from the air surrounding the locus of condensation. At low rates of condensation a considerable proportion of the available kinetic energy in the enclosed air is absorbed in friction and turbulence. That proportion reduces with higher rates of condensation

    Inhibition of Bruton's TK regulates macrophage NF-kappa B and NLRP3 inflammasome activation in metabolic inflammation

    Get PDF
    Background and Purpose: There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-\u3baB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity. Experimental Approach: Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation. Key Results: HFD-feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice decreased the activation of NF-\u3baB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS-1/Akt/GSK-3\u3b2 pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF-\u3baB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. Conclusion and Implications: We provide \u201cproof of concept\u201d evidence that BTK is a novel therapeutic target for the treatment of diet-induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti-inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease

    The key physical parameters governing frictional dissipation in a precipitating atmosphere

    Full text link
    Precipitation generates small-scale turbulent air flows the energy of which ultimately dissipates to heat. The power of this process has previously been estimated to be around 2-4 W m-2 in the tropics: a value comparable in magnitude to the dynamic power of the global circulation. Here we suggest that this previous power estimate is approximately double the true figure. Our result reflects a revised evaluation of the mean precipitation path length Hp. We investigate the dependence of Hp on surface temperature,relative humidity,temperature lapse rate and degree of condensation in the ascending air. We find that the degree of condensation,defined as the relative change of the saturated water vapor mixing ratio in the region of condensation, is a major factor determining Hp. We estimate from theory that the mean large-scale rate of frictional dissipation associated with total precipitation in the tropics lies between 1 and 2 W m-2 and show that our estimate is supported by empirical evidence. We show that under terrestrial conditions frictional dissipation constitutes a minor fraction of the dynamic power of condensation-induced atmospheric circulation,which is estimated to be at least 2.5 times larger. However,because Hp increases with surface temperature Ts, the rate of frictional dissipation would exceed that of condensation-induced dynamics, and thus block major circulation, at Ts >~320 K in a moist adiabatic atmosphere.Comment: 12 pp, 2 figure

    Vientos y lluvia: El papel de la bomba biótica

    No full text
    En 2007, Anastassia Makarieva y Victor Gorshkov elaboraron la Teoría de la Bomba Biótica (Makarieva A. a., 2007). Los dos científicos, matemáticos/físicos del Instituto de Física Nuclear de San Petersburgo, Rusia, describieron la Teoría de la Bomba Biótica (BPT) en términos de las leyes fundamentales de la física relativas al cambio de fase cuando el agua se evapora y luego se condensa a través del proceso de formación de nubes, a medida que el aire húmedo se eleva en la troposfera y se enfría con la altitud. El grado de saturación del vapor de agua sigue la ecuación de Clausius-Clapeyron para los gases ideales, teniendo en cuenta la temperatura (Kelvin), la humedad relativa y la presión barométrica
    corecore