96 research outputs found

    ADULT BRAIN Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE: Contrast-enhancing MS lesions are important markers of active inflammation in the diagnostic work-up of MS and in disease monitoring with MR imaging. Because intravenous contrast agents involve an expense and a potential risk of adverse events, it would be desirable to identify active lesions without using a contrast agent. The purpose of this study was to evaluate whether pre-contrast injection tissue-relaxation rates and proton density of MS lesions, by using a new quantitative MR imaging sequence, can identify active lesions

    Evaluation of sexual history-based screening of anatomic sites for chlamydia trachomatis and neisseria gonorrhoeae infection in men having sex with men in routine practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sexually transmitted infection (STI) screening programmes are implemented in many countries to decrease burden of STI and to improve sexual health. Screening for <it>Chlamydia trachomatis </it>and <it>Neisseria gonorrhoeae </it>has a prominent role in these protocols. Most of the screening programmes concerning men having sex with men (MSM) are based on opportunistic urethral testing. In The Netherlands, a history-based approach is used. The aim of this study is to evaluate the protocol of screening anatomic sites for <it>C. trachomatis </it>and <it>N. gonorrhoeae </it>infection based on sexual history in MSM in routine practice in The Netherlands.</p> <p>Methods</p> <p>All MSM visiting the clinic for STI in The Hague are routinely asked about their sexual practice during consulting. As per protocol, tests for urogenital, oropharyngeal and anorectal infection are obtained based on reported site(s) of sexual contact. All consultations are entered into a database as part of the national STI monitoring system. Data of an 18 months period were retrieved from this database and analysed.</p> <p>Results</p> <p>A total of 1455 consultations in MSM were registered during the study period. The prevalence of <it>C. trachomatis </it>and <it>N. gonorrhoeae </it>per anatomic site was: urethral infection 4.0% respectively and 2.8%, oropharynx 1.5% and 4.2%, and anorectum 8.2% and 6.0%. The majority of chlamydia cases (72%) involved a single anatomic site, which was especially manifest for anorectal infections (79%), while 42% of gonorrhoea cases were single site. Twenty-six percent of MSM with anorectal chlamydia and 17% with anorectal gonorrhoea reported symptoms of proctitis; none of the oropharyngeal infections were symptomatic. Most cases of anorectal infection (83%) and oropharyngeal infection (100%) would have remained undiagnosed with a symptom-based protocol.</p> <p>Conclusions</p> <p>The current strategy of sexual-history based screening of multiple anatomic sites for chlamydia and gonorrhoea in MSM is a useful and valid guideline which is to be preferred over a symptom-based screening protocol.</p

    The burden of knowing: balancing benefits and barriers in HIV testing decisions. a qualitative study from Zambia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Client-initiated HIV counselling and testing has been scaled up in many African countries, in the form of voluntary counselling and testing (VCT). Test rates have remained low, with HIV-related stigma being an important barrier to HIV testing. This study explored HIV testing decisions in one rural and one urban district in Zambia with high HIV prevalence and available antiretroviral treatment.</p> <p>Methods</p> <p>Data were collected through 17 in-depth interviews and two focus group discussions with individuals and 10 in-depth interviews with counsellors. Interpretive description methodology was employed to analyse the data.</p> <p>Results</p> <p>'To know your status' was found to be a highly charged concept yielding strong barriers against HIV testing. VCT was perceived as a diagnostic device and a gateway to treatment for the severely ill. Known benefits of prevention and early treatment were outweighed by a perceived burden of knowing your HIV status related to stigma and fear. The manner in which the VCT services were organised added to this burden.</p> <p>Conclusions</p> <p>This study draws on social stigma theory to enhance the understanding of the continuity of HIV related stigma in the presence of ART, and argues that the burden of knowing an HIV status and the related reluctance to get HIV tested can be understood both as a form of label-avoidance and as strong expressions of the still powerful embodied memories of suffering and death among non-curable AIDS patients over the last decades. Hope lies in the emerging signs of a reduction in HIV related stigma experienced by those who had been tested for HIV. Further research into innovative HIV testing service designs that do not add to the burden of knowing is needed.</p

    A critical assessment of the WHO responsiveness tool: lessons from voluntary HIV testing and counselling services in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health, fair financing and responsiveness to the user's needs and expectations are seen as the essential objectives of health systems. Efforts have been made to conceptualise and measure responsiveness as a basis for evaluating the non-health aspects of health systems performance. This study assesses the applicability of the responsiveness tool developed by WHO when applied in the context of voluntary HIV counselling and testing services (VCT) at a district level in Kenya.</p> <p>Methods</p> <p>A mixed method study was conducted employing a combination of quantitative and qualitative research methods concurrently. The questionnaire proposed by WHO was administered to 328 VCT users and 36 VCT counsellors (health providers). In addition to the questionnaire, qualitative interviews were carried out among a total of 300 participants. Observational field notes were also written.</p> <p>Results</p> <p>A majority of the health providers and users indicated that the responsiveness elements were very important, e.g. confidentiality and autonomy were regarded by most users and health providers as very important and were also reported as being highly observed in the VCT room. However, the qualitative findings revealed other important aspects related to confidentiality, autonomy and other responsiveness elements that were not captured by the WHO tool. Striking examples were inappropriate location of the VCT centre, limited information provided, language problems, and concern about the quality of counselling.</p> <p>Conclusion</p> <p>The results indicate that the WHO developed responsiveness elements are relevant and important in measuring the performance of voluntary HIV counselling and testing. However, the tool needs substantial revision in order to capture other important dimensions or perspectives. The findings also confirm the importance of careful assessment and recognition of locally specific aspects when conducting comparative studies on responsiveness of HIV testing services.</p

    Action to protect the independence and integrity of global health research

    Get PDF
    Storeng KT, Abimbola S, Balabanova D, et al. Action to protect the independence and integrity of global health research. BMJ GLOBAL HEALTH. 2019;4(3): e001746

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    Host range and symptomatology of Pepino mosaic virus strains occurring in Europe

    Get PDF
    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring in Europe when tested under different environmental conditions. To this end we compared the infectivity and symptom development of three, well characterized isolates belonging to three different PepMV strains, EU-tom, Ch2 and US1, by inoculating them on tomato, possible alternative host plants in the family Solanaceae and selected test plants. The inoculation experiments were done in 10 countries from south to north in Europe. The importance of alternative hosts among the solanaceous crops and the usefulness of test plants in the biological characterization of PepMV isolates are discussed. Our data for the three strains tested at 10 different European locations with both international and local cultivars showed that eggplant is an alternative host of PepMV. Sweet pepper is not an important host of PepMV, but potato can be infected when the right isolate is matched with a specific cultivar. Nicotiana occidentalis 37B is a useful indicator plant for PepMV studies, since it reacts with a different symptomatology to each one of the PepMV strains.Ravnikar, M.; Blystad, D.; Van Der Vlugt, R.; Alfaro Fernández, AO.; Del Carmen Cordoba, M.; Bese, G.; Hristova, D.... (2015). Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. European Journal of Plant Pathology. 143(1):43-56. doi:10.1007/s10658-015-0664-1S43561431Alfaro-Fernández, A., Córdoba-Sellés, M. C., Herrera-Vásquez, J. A., Cebrián, M. C., & Jordá, C. (2009). Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. Journal of Phytopathology, 158, 217–226.Charmichael, D. J., Rey, M. E. C., Naidoo, S., Cook, G., & van Heerden, S. W. (2011). First report of Pepino mosaic virus infecting tomato in South Africa. Plant Disease, 95(6), 767.2.Córdoba, M. C., Martínez-Priego, L., & Jordá, C. (2004). New natural hosts of Pepino mosaic virus in Spain. Plant Disease, 88, 906.Córdoba-Sellés, M. C., García-Rández, A., Alfaro-Fernández, A., & Jordá-Gutiérrez, C. (2007). Seed transmission of pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Disease, 91, 1250–1254.Efthimiou, K. E., Gatsios, A. P., Aretakis, K. C., Papayannis, L. C., & Katis, N. I. (2011). First report of Pepino mosaic virus infecting greenhouse cherry tomato in Greece. Plant Disease, 95(1), 78.2.Fakhro, A., von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gómez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. Journal of Virology, 83, 12378–12387.Hanssen, I. M., Paeleman, A., Wittemans, L., Goen, K., Lievens, B., Bragard, C., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2008). Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. European Journal of Plant Pathology, 121, 131–146.Hanssen, I. M., Paeleman, A., Vandewoestijne, E., Van Bergen, L., Bragard, C., Lievens, B., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2009). Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathology, 58, 450–460.Hanssen, I. M., Mumford, R., Blystad, D.-G., Cortez, I., Hasiów-Jaroszewska, B., Hristova, D., Pagán, I., Pereira, A.-M., Peters, J., Pospieszny, H., Ravnikar, M., Stijger, I., Tomassoli, L., Varveri, C., van der Vlugt, R., & Nielsen, S. L. (2010). Seed transmission of Pepino mosaic virus in tomato. European Journal of Plant Pathology, 126, 145–152.Hasiów-Jaroszewska, B., Borodynko, N., Jackowiak, P., Figlerowicz, M., & Pospieszny, H. (2010a). Pepino mosaic virus – a pathogen of tomato crops in Poland: biology, evolution and diagnostics. Journal of Plant Protection Research, 50, 470–476.Hasiów-Jaroszewska, B., Jackowiak, P., Borodynko, N., Figlerowicz, M., & Pospieszny, H. (2010b). Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes, 41, 260–267.Jeffries, C. J. (1998). FAO/IPGRI technical guidelines for the safe movement of germplasm no. 19. Potato. Food and agriculture organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome pp 177Jones, R. A. C., Koenig, R., & Lesemann, D. E. (1980). Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61–68.Jordá, C., Lázaro Pérez, A., & Martínez Culebras, P. (2001). First report of Pepino mosaic virus on natural hosts. Plant Disease, 85, 1292.King, A. M. Q., Adams, M. J., Carstens, E. B., Lefkowitz, E. J., (eds). (2012). potexvirus, pp 912–915, in virus taxonomy, classification and nomenclature of viruses; ninth report of the international committee on taxonomy of viruses (p 1327) London, UK: Elsevier Academic PressLing, K.-S., & Zhang, W. (2011). First report of Pepino mosaic virus infecting tomato in Mexico. Plant Disease, 95(8), 1035.Martin, J., & Mousserion, C. (2002). Potato varieties which are sensitive to the tomato strains of Pepino mosaic virus (PepMV). Phytoma Défence Végétaux, 552, 26–28.Mehle, N., Gutierrez-Aguirre, I., Prezelj, N., Delić, D., Vidic, U., & Ravnikar, M. (2014). Survival and transmission of potato virus Y, pepino mosaic virus, and potato spindle tuber viroid in water. Applied and Environmental Microbiology, 80(4), 1455–1462.Moreno-Pérez, M. G., Pagán, I., Aragón-Caballero, L., Cáceres, F., Aurora Fraile, A., & García-Arenal, F. (2014). Ecological and genetic determinants of Pepino mosaic virus emergence. Journal of Virology, 88(6), 3359–3368.Noël, P., Hance, T., & Bragard, C. (2014). Transmission of the pepino mosaic virus by whitefly. European Journal of Plant Pathology, 138, 23–27.Pagan, I., Cordoba-Selles, M. D., Martinez-Priego, L., Fraile, A., Malpica, J. M., Jorda, C., & Garcia-Arenal, F. (2006). Genetic structure of the population of pepino mosaic virus infecting tomato crops in Spain. Phytopathology, 96, 274–279.Papayiannis, L. C., Kokkinos, C. D., & Alfaro-Fernández, A. (2012). Detection, characterization and host range studies of Pepino mosaic virus in Cyprus. European Journal of Plant Pathology, 132, 1–7.Pospieszny, H., Haslow, B., & Borodynko, N. (2008). Characterization of two Polish isolates of Pepino mosaic virus. European Journal of Plant Pathology, 122, 443–445.Salomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.Samson, R. G., Allen, T. C., & Whitworth, J. L. (1993). Evaluation of direct tissue blotting to detect potato viruses. American Potato Journal, 70, 257–265.Schwarz, D., Beuch, U., Bandte, M., Fakhro, A., Büttner, C., & Obermeier, C. (2010). Spread and interaction of pepino mosaic virus (PepMV) and pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathology, 59(3), 443–452.Shipp, J. L., Buitenhuis, R., Stobbs, L., Wang, K., Kim, W. S., & Ferguson, G. (2008). Vectoring of pepino mosaic virus by bumble-bees in tomato greenhouses. Annals of Applied Biology, 153, 149–155.Van der Vlugt, R. A. A. (2009). Pepino mosaic virus (review). Hellenic Plant Protection Journal, 2, 47–56.Van der Vlugt, R. A. A., & Stijger, C. C. M. M. (2008). Pepino mosaic virus. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of virology (5th ed., pp. 103–108). Wageningen: Oxford Elsevier.Van der Vlugt, R. A. A., Stijger, C. C. M. M., Verhoeven, J. T. J., & Lesemann, D.-E. (2000). First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103.Van der Vlugt, R. A. A., Cuperus, C., Vink, J., Stijger, I. C. M. M., Lesemann, D.-E., Verhoeven, J. T. J., & Roenhorst, J. W. (2002). Identification and characterization of Pepino mosaic potexvirus in tomato. Bulletin EPPO/EPPO Bulletin, 32, 503–508.Verchot-Lubicz, J., Chang-Ming, Y., & Bamunusinghe, D. (2007). Molecular biology of potexviruses: recent advances. Journal of General Virology, 88(6), 1643–1655.Verhoeven, J. T. H. J., van der Vlugt, R., & Roenhorst, J. W. (2003). High similarity between tomato isolates of pepino mosaic virus suggests a common origin. European Journal of Plant Pathology, 109, 419–425.Werkman, A.W., & Sansford, C.E. (2010). Pest risk analysis for pepino mosaic virus for the EU. Deliverable Report 4.3. EU Sixth Framework project PEPEIRA. http:// www.pepeira.com .Wright, D., & Mumford, R. (1999). Pepino mosaic potexvirus (PepMV): first records in tomato in the United Kingdom. Plant disease notice (89th ed.). York, UK: Central Science Laboratory

    High Prevalence of Mycoplasma pneumoniae and Chlamydia pneumoniae in Children with Acute Respiratory Infections from Lima, Peru

    Get PDF
    Background Mycoplasma pneumoniae and Chlamydia pneumoniae are atypical pathogens responsible for pneumonia and a leading cause of morbidity and mortality in low income countries. The study objective is to determine the prevalence of this pathogens in Peruvian children with acute respiratory infections. Methods A consecutive cross-sectional study was conducted in Lima, Peru from May 2009 to September 2010. A total of 675 children admitted with clinical diagnoses of acute respiratory infections were tested for Mycoplasma pneumoniae and Chlamydia pneumoniae detection by polymerase chain reaction (PCR), and clinical symptoms were registered by the attending physician. Results Mycoplasma pneumonia was detected in 25.19% (170/675) of nasopharyngeal samples and Chlamydia pneumonia in 10.52% (71/675). The most common symptoms in patients with these atypical pathogens were rhinorrhea, cough and fever. A higher prevalence of Mycoplasma pneumoniae cases were registered in summer, between December 2009 and March 2010. Conclusions Mycoplasma pneumoniae and Chlamydia pneumonia are a significant cause of morbidity in Peruvian children with acute respiratory infections (ARI). Further studies should evaluate the use of reliable techniques such as PCR in Peru in order to avoid underdiagnoses of these atypical pathogens
    corecore