3,423 research outputs found
Chandra ACIS Survey of M33 (ChASeM33): The enigmatic X-ray emission from IC131
We present the first X-ray analysis of the diffuse hot ionized gas and the
point sources in IC131, after NGC604 the second most X-ray luminous giant HII
region in M33. The X-ray emission is detected only in the south eastern part of
IC131 (named IC131-se) and is limited to an elliptical region of ~200pc in
extent. This region appears to be confined towards the west by a hemispherical
shell of warm ionized gas and only fills about half that volume. Although the
corresponding X-ray spectrum has 1215 counts, it cannot conclusively be told
whether the extended X-ray emission is thermal, non-thermal, or a combination
of both. A thermal plasma model of kT_e=4.3keV or a single power law of
Gamma=2.1 fit the spectrum equally well. If the spectrum is purely thermal
(non-thermal), the total unabsorbed X-ray luminosity in the 0.35-8keV energy
band amounts to L_X = 6.8(8.7)x10^35erg/s. Among other known HII regions
IC131-se seems to be extreme regarding the combination of its large extent of
the X-ray plasma, the lack of massive O stars, its unusually high electron
temperature (if thermal), and the large fraction of L_X emitted above 2keV
(~40-53%). A thermal plasma of ~4keV poses serious challenges to theoretical
models, as it is not clear how high electron temperatures can be produced in
HII regions in view of mass-proportional and collisionless heating. If the gas
is non-thermal or has non-thermal contributions, synchrotron emission would
clearly dominate over inverse Compton emission. It is not clear if the same
mechanisms which create non-thermal X-rays or accelerate CRs in SNRs can be
applied to much larger scales of 200pc. In both cases the existing theoretical
models for giant HII regions and superbubbles do not explain the hardness and
extent of the X-ray emission in IC131-se.Comment: 28 pages, 7 figures and 2 tables. Accepted for publication in ApJ.
For a high resolution version of the paper see
http://hea-www.harvard.edu/vlp_m33_public/publications.htm
SMASHing the LMC: A Tidally-induced Warp in the Outer LMC and a Large-scale Reddening Map
We present a study of the three-dimensional (3D) structure of the Large
Magellanic Cloud (LMC) using ~2.2 million red clump (RC) stars selected from
the Survey of the MAgellanic Stellar History. To correct for line-of-sight dust
extinction, the intrinsic RC color and magnitude and their radial dependence
are carefully measured by using internal nearly dust-free regions. These are
then used to construct an accurate 2D reddening map (165 square degrees with
~10 arcmin resolution) of the LMC disk and the 3D spatial distribution of RC
stars. An inclined disk model is fit to the 2D distance map yielding a best-fit
inclination angle i = 25.86(+0.73,-1.39) degrees with random errors of +\-0.19
degrees and line-of-nodes position angle theta = 149.23(+6.43,-8.35) degrees
with random errors of +/-0.49 degrees. These angles vary with galactic radius,
indicating that the LMC disk is warped and twisted likely due to the repeated
tidal interactions with the Small Magellanic Cloud (SMC). For the first time,
our data reveal a significant warp in the southwestern part of the outer disk
starting at rho ~ 7 degrees that departs from the defined LMC plane up to ~4
kpc toward the SMC, suggesting that it originated from a strong interaction
with the SMC. In addition, the inner disk encompassing the off-centered bar
appears to be tilted up to 5-15 degrees relative to the rest of the LMC disk.
These findings on the outer warp and the tilted bar are consistent with the
predictions from the Besla et al. simulation of a recent direct collision with
the SMC.Comment: 25 pages, 15 figures, published in Ap
Contractive Schroedinger cat states for a free mass
Contractive states for a free quantum particle were introduced by Yuen [Yuen
H P 1983 Phys. Rev. Lett. 51, 719] in an attempt to evade the standard quantum
limit for repeated position measurements. We show how appropriate families of
two- and three component ``Schroedinger cat states'' are able to support
non-trivial correlations between the position and momentum observables leading
to contractive behavior. The existence of contractive Schroedinger cat states
is suggestive of potential novel roles of non-classical states for precision
measurement schemes.Comment: 24 pages, 7 encapsulated eps color figures, REVTeX4 style. Published
online in New Journal of Physics 5 (2003) 5.1-5.21. Higher-resolution figures
available in published version. (accessible at http://www.njp.org/
Critical Race Theory and Education: racism and anti-racism in educational theory and praxis
What is Critical Race Theory (CRT) and what does it offer educational researchers and practitioners outside the US? This paper addresses these questions by examining the recent history of antiracist research and policy in the UK. In particular, the paper argues that conventional forms of antiracism have proven unable to keep pace with the development of increasingly racist and exclusionary education polices that operate beneath a veneer of professed tolerance and diversity. In particular, contemporary antiracism lacks clear statements of principle and theory that risk reinventing the wheel with each new study; it is increasingly reduced to a meaningless slogan; and it risks appropriation within a reformist “can do” perspective dominated by the de-politicized and managerialist language of school effectiveness and improvement. In contrast, CRT offers a genuinely radical and coherent set of approaches that could revitalize critical research in education across a range of inquiries, not only in self-consciously "multicultural" studies. The paper reviews the developing terrain of CRT in education, identifying its key defining elements and the conceptual tools that characterise the work. CRT in education is a fast changing and incomplete project but it can no longer be ignored by the academy beyond North America
Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors.
Identifying tumor antigen-specific T cells from cancer patients has important implications for immunotherapy diagnostics and therapeutics. Here, we show that CD103+CD39+ tumor-infiltrating CD8 T cells (CD8 TIL) are enriched for tumor-reactive cells both in primary and metastatic tumors. This CD8 TIL subset is found across six different malignancies and displays an exhausted tissue-resident memory phenotype. CD103+CD39+ CD8 TILs have a distinct T-cell receptor (TCR) repertoire, with T-cell clones expanded in the tumor but present at low frequencies in the periphery. CD103+CD39+ CD8 TILs also efficiently kill autologous tumor cells in a MHC-class I-dependent manner. Finally, higher frequencies of CD103+CD39+ CD8 TILs in patients with head and neck cancer are associated with better overall survival. Our data thus describe an approach for detecting tumor-reactive CD8 TILs that will help define mechanisms of existing immunotherapy treatments, and may lead to future adoptive T-cell cancer therapies
The next detectors for gravitational wave astronomy
This paper focuses on the next detectors for gravitational wave astronomy
which will be required after the current ground based detectors have completed
their initial observations, and probably achieved the first direct detection of
gravitational waves. The next detectors will need to have greater sensitivity,
while also enabling the world array of detectors to have improved angular
resolution to allow localisation of signal sources. Sect. 1 of this paper
begins by reviewing proposals for the next ground based detectors, and presents
an analysis of the sensitivity of an 8 km armlength detector, which is proposed
as a safe and cost-effective means to attain a 4-fold improvement in
sensitivity. The scientific benefits of creating a pair of such detectors in
China and Australia is emphasised. Sect. 2 of this paper discusses the high
performance suspension systems for test masses that will be an essential
component for future detectors, while sect. 3 discusses solutions to the
problem of Newtonian noise which arise from fluctuations in gravity gradient
forces acting on test masses. Such gravitational perturbations cannot be
shielded, and set limits to low frequency sensitivity unless measured and
suppressed. Sects. 4 and 5 address critical operational technologies that will
be ongoing issues in future detectors. Sect. 4 addresses the design of thermal
compensation systems needed in all high optical power interferometers operating
at room temperature. Parametric instability control is addressed in sect. 5.
Only recently proven to occur in Advanced LIGO, parametric instability
phenomenon brings both risks and opportunities for future detectors. The path
to future enhancements of detectors will come from quantum measurement
technologies. Sect. 6 focuses on the use of optomechanical devices for
obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum
measurement options
Recommended from our members
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational
waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model
(HMM) to track spin wandering. This search improves on previous HMM-based
searches of LIGO data by using an improved frequency domain matched filter, the
-statistic, and by analysing data from Advanced LIGO's second
observing run. In the frequency range searched, from to
, we find no evidence of gravitational radiation. At
, the most sensitive search frequency, we report an upper
limit on gravitational wave strain (at 95\% confidence) of when marginalising over source inclination angle. This is the
most sensitive search for Scorpius X-1, to date, that is specifically designed
to be robust in the presence of spin wandering
A Cryogenic Silicon Interferometer for Gravitational-wave Detection
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor
Measurement of the Strong Coupling Constant from Inclusive Jet Production at the Tevatron Collider
We report a measurement of the strong coupling constant, ,
extracted from inclusive jet production in collisions at
1800 GeV. The QCD prediction for the evolution of with
jet transverse energy is tested over the range 40<<450 GeV using
for the renormalization scale. The data show good agreement with QCD in
the region below 250 GeV. In the text we discuss the data-theory comparison in
the region from 250 to 450 GeV. The value of at the mass of the
boson averaged over the range 40<<250 GeV is found to be
. The associated theoretical uncertainties are mainly due to the choice
of renormalization scale (^{+6%}_{-4%}) and input parton distribution
functions (5%).Comment: 7 pages, 3 figures, using RevTeX. Submitted to Physical Review
Letter
- …