3,423 research outputs found

    Chandra ACIS Survey of M33 (ChASeM33): The enigmatic X-ray emission from IC131

    Full text link
    We present the first X-ray analysis of the diffuse hot ionized gas and the point sources in IC131, after NGC604 the second most X-ray luminous giant HII region in M33. The X-ray emission is detected only in the south eastern part of IC131 (named IC131-se) and is limited to an elliptical region of ~200pc in extent. This region appears to be confined towards the west by a hemispherical shell of warm ionized gas and only fills about half that volume. Although the corresponding X-ray spectrum has 1215 counts, it cannot conclusively be told whether the extended X-ray emission is thermal, non-thermal, or a combination of both. A thermal plasma model of kT_e=4.3keV or a single power law of Gamma=2.1 fit the spectrum equally well. If the spectrum is purely thermal (non-thermal), the total unabsorbed X-ray luminosity in the 0.35-8keV energy band amounts to L_X = 6.8(8.7)x10^35erg/s. Among other known HII regions IC131-se seems to be extreme regarding the combination of its large extent of the X-ray plasma, the lack of massive O stars, its unusually high electron temperature (if thermal), and the large fraction of L_X emitted above 2keV (~40-53%). A thermal plasma of ~4keV poses serious challenges to theoretical models, as it is not clear how high electron temperatures can be produced in HII regions in view of mass-proportional and collisionless heating. If the gas is non-thermal or has non-thermal contributions, synchrotron emission would clearly dominate over inverse Compton emission. It is not clear if the same mechanisms which create non-thermal X-rays or accelerate CRs in SNRs can be applied to much larger scales of 200pc. In both cases the existing theoretical models for giant HII regions and superbubbles do not explain the hardness and extent of the X-ray emission in IC131-se.Comment: 28 pages, 7 figures and 2 tables. Accepted for publication in ApJ. For a high resolution version of the paper see http://hea-www.harvard.edu/vlp_m33_public/publications.htm

    SMASHing the LMC: A Tidally-induced Warp in the Outer LMC and a Large-scale Reddening Map

    Full text link
    We present a study of the three-dimensional (3D) structure of the Large Magellanic Cloud (LMC) using ~2.2 million red clump (RC) stars selected from the Survey of the MAgellanic Stellar History. To correct for line-of-sight dust extinction, the intrinsic RC color and magnitude and their radial dependence are carefully measured by using internal nearly dust-free regions. These are then used to construct an accurate 2D reddening map (165 square degrees with ~10 arcmin resolution) of the LMC disk and the 3D spatial distribution of RC stars. An inclined disk model is fit to the 2D distance map yielding a best-fit inclination angle i = 25.86(+0.73,-1.39) degrees with random errors of +\-0.19 degrees and line-of-nodes position angle theta = 149.23(+6.43,-8.35) degrees with random errors of +/-0.49 degrees. These angles vary with galactic radius, indicating that the LMC disk is warped and twisted likely due to the repeated tidal interactions with the Small Magellanic Cloud (SMC). For the first time, our data reveal a significant warp in the southwestern part of the outer disk starting at rho ~ 7 degrees that departs from the defined LMC plane up to ~4 kpc toward the SMC, suggesting that it originated from a strong interaction with the SMC. In addition, the inner disk encompassing the off-centered bar appears to be tilted up to 5-15 degrees relative to the rest of the LMC disk. These findings on the outer warp and the tilted bar are consistent with the predictions from the Besla et al. simulation of a recent direct collision with the SMC.Comment: 25 pages, 15 figures, published in Ap

    Contractive Schroedinger cat states for a free mass

    Get PDF
    Contractive states for a free quantum particle were introduced by Yuen [Yuen H P 1983 Phys. Rev. Lett. 51, 719] in an attempt to evade the standard quantum limit for repeated position measurements. We show how appropriate families of two- and three component ``Schroedinger cat states'' are able to support non-trivial correlations between the position and momentum observables leading to contractive behavior. The existence of contractive Schroedinger cat states is suggestive of potential novel roles of non-classical states for precision measurement schemes.Comment: 24 pages, 7 encapsulated eps color figures, REVTeX4 style. Published online in New Journal of Physics 5 (2003) 5.1-5.21. Higher-resolution figures available in published version. (accessible at http://www.njp.org/

    Critical Race Theory and Education: racism and anti-racism in educational theory and praxis

    Get PDF
    What is Critical Race Theory (CRT) and what does it offer educational researchers and practitioners outside the US? This paper addresses these questions by examining the recent history of antiracist research and policy in the UK. In particular, the paper argues that conventional forms of antiracism have proven unable to keep pace with the development of increasingly racist and exclusionary education polices that operate beneath a veneer of professed tolerance and diversity. In particular, contemporary antiracism lacks clear statements of principle and theory that risk reinventing the wheel with each new study; it is increasingly reduced to a meaningless slogan; and it risks appropriation within a reformist “can do” perspective dominated by the de-politicized and managerialist language of school effectiveness and improvement. In contrast, CRT offers a genuinely radical and coherent set of approaches that could revitalize critical research in education across a range of inquiries, not only in self-consciously "multicultural" studies. The paper reviews the developing terrain of CRT in education, identifying its key defining elements and the conceptual tools that characterise the work. CRT in education is a fast changing and incomplete project but it can no longer be ignored by the academy beyond North America

    Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors.

    Get PDF
    Identifying tumor antigen-specific T cells from cancer patients has important implications for immunotherapy diagnostics and therapeutics. Here, we show that CD103+CD39+ tumor-infiltrating CD8 T cells (CD8 TIL) are enriched for tumor-reactive cells both in primary and metastatic tumors. This CD8 TIL subset is found across six different malignancies and displays an exhausted tissue-resident memory phenotype. CD103+CD39+ CD8 TILs have a distinct T-cell receptor (TCR) repertoire, with T-cell clones expanded in the tumor but present at low frequencies in the periphery. CD103+CD39+ CD8 TILs also efficiently kill autologous tumor cells in a MHC-class I-dependent manner. Finally, higher frequencies of CD103+CD39+ CD8 TILs in patients with head and neck cancer are associated with better overall survival. Our data thus describe an approach for detecting tumor-reactive CD8 TILs that will help define mechanisms of existing immunotherapy treatments, and may lead to future adoptive T-cell cancer therapies

    The next detectors for gravitational wave astronomy

    Full text link
    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    Measurement of the Strong Coupling Constant from Inclusive Jet Production at the Tevatron pˉp\bar pp Collider

    Get PDF
    We report a measurement of the strong coupling constant, αs(MZ)\alpha_s(M_Z), extracted from inclusive jet production in ppˉp\bar{p} collisions at s=\sqrt{s}=1800 GeV. The QCD prediction for the evolution of αs\alpha_s with jet transverse energy ETE_T is tested over the range 40<ETE_T<450 GeV using ETE_T for the renormalization scale. The data show good agreement with QCD in the region below 250 GeV. In the text we discuss the data-theory comparison in the region from 250 to 450 GeV. The value of αs\alpha_s at the mass of the Z0Z^0 boson averaged over the range 40<ETE_T<250 GeV is found to be αs(MZ)=0.1178±0.0001(stat)0.0095+0.0081(exp.syst)\alpha_s(M_{Z})= 0.1178 \pm 0.0001{(\rm stat)}^{+0.0081}_{-0.0095}{\rm (exp. syst)}. The associated theoretical uncertainties are mainly due to the choice of renormalization scale (^{+6%}_{-4%}) and input parton distribution functions (5%).Comment: 7 pages, 3 figures, using RevTeX. Submitted to Physical Review Letter
    corecore