478 research outputs found
Selection of large quantites of embryogenic calli from indica rice seeds for production of fertile transgenic plants using the biolistic method
fertile transgenic plants using the biolistic metho
Research Notes : The effect of added methionine on the growth and protein composition of soybean on cotyledons
Immature soybean cotyledons grow well in aseptic in vitro culture (Ann. Bot. 41: 29, 1977). The effect of adding methionine to a sulfuradequate medium was tested . Methionine caused a dry weight increase of 23%. Methionine also raised the methionine content of the protein by 22% and decreased the arginine content by 11 %
Secondary structure of Ac-Ala-LysH polyalanine peptides (=5,10,15) in vacuo: Helical or not?
The polyalanine-based peptide series Ac-Ala_n-LysH+ (n=5-20) is a prime
example that a secondary structure motif which is well-known from the solution
phase (here: helices) can be formed in vacuo. We here revisit this conclusion
for n=5,10,15, using density-functional theory (van der Waals corrected
generalized gradient approximation), and gas-phase infrared vibrational
spectroscopy. For the longer molecules (n=10,15) \alpha-helical models provide
good qualitative agreement (theory vs. experiment) already in the harmonic
approximation. For n=5, the lowest energy conformer is not a simple helix, but
competes closely with \alpha-helical motifs at 300K. Close agreement between
infrared spectra from experiment and ab initio molecular dynamics (including
anharmonic effects) supports our findings.Comment: 4 pages, 4 figures, Submitted to JPC Letter
Radically Rethinking Agriculture for the 21st Century
Population growth, arable land and fresh water limits, and climate change have profound implications for the ability of agriculture to meet this century’s demands for food, feed, fiber, and fuel while reducing the environmental impact of their production. Success depends on the acceptance and use of contemporary molecular techniques, as well as the increasing development of farming systems that use saline water and integrate nutrient flows
Plasma cholesterol levels and brain development in preterm newborns.
BackgroundTo assess whether postnatal plasma cholesterol levels are associated with microstructural and macrostructural regional brain development in preterm newborns.MethodsSixty preterm newborns (born 24-32 weeks gestational age) were assessed using MRI studies soon after birth and again at term-equivalent age. Blood samples were obtained within 7 days of each MRI scan to analyze for plasma cholesterol and lathosterol (a marker of endogenous cholesterol synthesis) levels. Outcomes were assessed at 3 years using the Bayley Scales of Infant Development, Third Edition.ResultsEarly plasma lathosterol levels were associated with increased axial and radial diffusivities and increased volume of the subcortical white matter. Early plasma cholesterol levels were associated with increased volume of the cerebellum. Early plasma lathosterol levels were associated with a 2-point decrease in motor scores at 3 years.ConclusionsHigher early endogenous cholesterol synthesis is associated with worse microstructural measures and larger volumes in the subcortical white matter that may signify regional edema and worse motor outcomes. Higher early cholesterol is associated with improved cerebellar volumes. Further work is needed to better understand how the balance of cholesterol supply and endogenous synthesis impacts preterm brain development, especially if these may be modifiable factors to improve outcomes
Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease
We present the first application of the hypothesis-rich mathematical theory
to genome-wide association data. The Hamza et al. late-onset sporadic
Parkinson's disease genome-wide association study dataset was analyzed. We
found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers
increased susceptibility to Parkinson's disease. The association of DZIP1 with
Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing
theory.Comment: 14 page
Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling
It is known that many chemotherapeutics induce cellular apoptosis over hours to days. During apoptosis, numerous cellular proteases are activated, most canonically the caspases. We speculated that detection of proteolytic fragments released from apoptotic cells into the peripheral blood may serve as a unique indicator of chemotherapy-induced cell death. Here we used an enzymatic labeling process to positively enrich free peptide α-amines in the plasma of hematologic malignancy patients soon after beginning treatment. This N-terminomic approach largely avoids interference by high-abundance proteins that complicate traditional plasma proteomic analyses. Significantly, by mass spectrometry methods, we found strong biological signatures of apoptosis directly in the postchemotherapy plasma, including numerous caspase-cleaved peptides as well as relevant peptides from apoptotic and cell-stress proteins second mitochondria-derived activator of caspases, HtrA serine peptidase 2, and activating transcription factor 6. We also treated hematologic cancer cell lines with clinically relevant chemotherapeutics and monitored proteolytic fragments released into the media. Remarkably, many of these peptides coincided with those found in patient samples. Overall, we identified 153 proteolytic peptides in postchemotherapy patient plasma as potential indicators of cellular apoptosis. Through targeted quantitative proteomics, we verified that many of these peptides were indeed increased post- vs. prechemotherapy in additional patients. Our findings reveal that numerous proteolytic fragments are released from dying tumor cells. Monitoring posttreatment proteolysis may lead to a novel class of inexpensive, rapid biomarkers of cell death
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
- …