800 research outputs found

    Optimal Torque and Stiffness Control in Compliantly Actuated Robots

    Get PDF
    Abstract — Anthropomorphic robots that aim to approach human performance agility and efficiency are typically highly redundant not only in their kinematics but also in actuation. Variable-impedance actuators, used to drive many of these devices, are capable of modulating torque and passive impedance (stiffness and/or damping) simultaneously and independently. Here, we propose a framework for simultaneous optimisation of torque and impedance (stiffness) profiles in order to optimise task performance, tuned to the complex hardware and incorporating real-world constraints. Simulation and hardware experiments validate the viability of this approach to complex, state dependent constraints and demonstrate task performance benefits of optimal temporal impedance modulation. Index Terms — Variable-stiffness actuation, physical constraints, optimal control

    Line Defects in Molybdenum Disulfide Layers

    Full text link
    Layered molecular materials and especially MoS2 are already accepted as promising candidates for nanoelectronics. In contrast to the bulk material, the observed electron mobility in single-layer MoS2 is unexpectedly low. Here we reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion domains, where the layer changes its direction through a line defect. The line defects are observed experimentally by atomic resolution TEM. The structures were modeled and the stability and electronic properties of the defects were calculated using quantum-mechanical calculations based on the Density-Functional Tight-Binding method. The results of these calculations indicate the occurrence of new states within the band gap of the semiconducting MoS2. The most stable non-stoichiometric defect structures are observed experimentally, one of which contains metallic Mo-Mo bonds and another one bridging S atoms

    Quantitative Imaging of Regional Aerosol Deposition, Lung Ventilation and Morphology by Synchrotron Radiation CT

    Get PDF
    To understand the determinants of inhaled aerosol particle distribution and targeting in the lung, knowledge of regional deposition, lung morphology and regional ventilation, is crucial. No single imaging modality allows the acquisition of all such data together. Here we assessed the feasibility of dual-energy synchrotron radiation imaging to this end in anesthetized rabbits; both in normal lung (n = 6) and following methacholine (MCH)-induced bronchoconstriction (n = 6), a model of asthma. We used K-edge subtraction CT (KES) imaging to quantitatively map the regional deposition of iodine-containing aerosol particles. Morphological and regional ventilation images were obtained, followed by quantitative regional iodine deposition maps, after 5 and 10 minutes of aerosol administration. Iodine deposition was markedly inhomogeneous both in normal lung and after induced bronchoconstrition. Deposition was significantly reduced in the MCH group at both time points, with a strong dependency on inspiratory flow in both conditions (R-2 = 0.71; p <0.0001). We demonstrate for the first time, the feasibility of KES CT for quantitative imaging of lung deposition of aerosol particles, regional ventilation and morphology. Since these are among the main factors determining lung aerosol deposition, we expect this imaging approach to bring new contributions to the understanding of lung aerosol delivery, targeting, and ultimately biological efficacy.Peer reviewe

    Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

    Get PDF
    Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS)1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals

    Three-dimensional Quantum-size Effect In Chemically Deposited Cadmium Selenide Films

    Get PDF
    Optical band gaps, Eg, up to 0.5 eV higher than in single-crystal samples, are observed for chemically deposited films of CdSe and explained in terms of a quantum-size effect, whereby the electrons are localized in individual crystallites. The increase in Eg depends strongly on deposition temperature, with the greatest increase obtained at the lowest temperature. Annealing at temperatures above the deposition temperature causes a decrease in Eg; this decrease is stronger at higher annealing temperature. Structural studies of the as-deposited layers showed them to be composed of microcrystalline, cubic CdSe, and electron microscopy resolved them into individual crystallites of typically 4080-A diameter, depending on deposition temperature. This is the first example reported of a three-dimensional quantum-size effect in a film. © 1987 The American Physical Society.3684215422

    Robotic assembly of complex planar parts: An experimental evaluation

    Full text link
    In this paper we present an experimental evaluation of automatic robotic assembly of complex planar parts. The torque-controlled DLR light-weight robot, equipped with an on-board camera (eye-in-hand configuration), is committed with the task of looking for given parts on a table, picking them, and inserting them inside the corresponding holes on a movable plate. Visual servoing techniques are used for fine positioning over the selected part/hole, while insertion is based on active compliance control of the robot and robust assembly planning in order to align the parts automatically with the hole. Execution of the complete task is validated through extensive experiments, and performance of humans and robot are compared in terms of overall execution time

    When do Lyapunov Subcenter Manifolds become Eigenmanifolds?

    Get PDF
    Multi-body mechanical systems have rich internal dynamics, which can be exploited to formulate efficient control targets. For periodic regulation tasks in robotics applications, this motivated the extension of the theory on nonlinear normal modes to Riemannian manifolds, and led to the definition of Eigenmanifolds. This definition is geometric, which is advantageous for generality within robotics but also obscures the connection of Eigenmanifolds to a large body of results from the literature on nonlinear dynamics. We bridge this gap, showing that Eigenmanifolds are instances of Lyapunov subcenter manifolds (LSMs), and that their stronger geometric properties with respect to LSMs follow from a time-symmetry of conservative mechanical systems. This directly leads to local existence and uniqueness results for Eigenmanifolds. Furthermore, we show that an additional spatial symmetry provides Eigenmanifolds with yet stronger properties of Rosenberg manifolds, which can be favorable for control applications, and we present a sufficient condition for their existence and uniqueness. These theoretical results are numerically confirmed on two mechanical systems with a non-constant inertia tensor: a double pendulum and a 5-link pendulum

    The Impact of Macular Disease on Pedestrian Detection: A Driving Simulator Evaluation

    Get PDF
    We describe the design of a driving simulator study to determine the effect of central visual field loss (due to macular disease) on pedestrian detection when driving. Pilot data suggest that a scotoma (blind area) in the central visual field can impair driving by increasing response time to hazardous circumstances

    Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16

    Get PDF
    Multipotent progenitor cells confirm their T cell–lineage identity in the CD4^–CD8^– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials
    corecore