194 research outputs found

    Phase stability of stress-sensitive Ag2CO3 silver carbonate at high pressures and temperature

    Get PDF
    Silver carbonate (Ag2CO3) is a material currently used for artificial carbon storage. In this work, we report synchrotron X-ray powder diffraction (XRD) experiments under high pressure and high temperature in combination with density-functional theory (DFT) calculations on silver carbonate up to 13.3 GPa. Two pressure-induced phase transitions were observed at room temperature: at 2.9 GPa to a high-pressure (HP1) phase and at 10.5 GPa to a second high-pressure phase (HP2). The facts that a) the HP2 phase can be indexed with the initial P21/m structure, b) our DFT calculations predict the initial structure is stable in the entire pressure range, and c) the HP2 phase is stable under decompression suggest that the intermediate HP1 phase is a product of the appearance of non-hydrostatic stresses in the sample. The observed structural transformations are associated to a high sensitivity of this compound to non-hydrostatic conditions. The compressibility of Ag2CO3 has also been determined, showing the c axis is the most compressible and that the bulk modulus increases quickly with applied pressure. We attribute both observations to the weak nature of the closed-shell Ag–Ag interactions in this material. The behavior of Ag2CO3 under heating at approximately 3 GPa was also studied. No temperature-induced phase transitions were found at this pressure, and the thermal expansion was determined to be relatively high for a carbonate.Authors thank the financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) and the Agencia Estatal de Investigación under projects MALTA Consolider Ingenio 2010 network (RED2018-102612-T) and PGC2021-125518NB-I00 (cofinanced by EU FEDER funds), and from the Generalitat Valenciana under projects CIAICO/2021/241 and MFA/2022/007. A.O.R. acknowledges the financial support of the Spanish MINECO RyC-2016-20301 Ramón y Cajal Grant and the project AYUD/2021/51036 of the Principality of Asturias (cofinanced by EU FEDER funds). Authors also thank the MALTA Consolider supercomputing centre and Compute Canada for computational resources and ALBA-CELLS synchrotron for providing beamtime under experiments 2020084419 and 2021024988. These experiments were performed at the MSPD beamline with the collaboration of ALBA staff

    Phase stability and dense polymorph of the BaCa(CO3)2 barytocalcite carbonate

    Get PDF
    The double carbonate BaCa(CO3)2 holds potential as host compound for carbon in the Earth?s crust and mantle. Here, we report the crystal structure determination of a high-pressure BaCa(CO3)2 phase characterized by single-crystal X-ray diffraction. This phase, named post-barytocalcite, was obtained at 5.7 GPa and can be described by a monoclinic Pm space group. The barytocalcite to post-baritocalcite phase transition involves a significant discontinuous 1.4% decrease of the unit-cell volume, and the increase of the coordination number of 1/4 and 1/2 of the Ba and Ca atoms, respectively. High-pressure powder X-ray diffraction measurements at room- and high-temperatures using synchrotron radiation and DFT calculations yield the thermal expansion of barytocalcite and, together with single-crystal data, the compressibility and anisotropy of both the low- and high-pressure phases. The calculated enthalpy differences between different BaCa(CO3)2 polymorphs confirm that barytocalcite is the thermodynamically stable phase at ambient conditions and that it undergoes the phase transition to the experimentally observed post-barytocalcite phase. The double carbonate is significantly less stable than a mixture of the CaCO3 and BaCO3 end-members above 10 GPa. The experimental observation of the high-pressure phase up to 15 GPa and 300 ºC suggests that the decomposition into its single carbonate components is kinetically hindered.Authors thank the fnancial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) and the Agencia Estatal de Investigación under projects MALTA Consolider Ingenio 2010 network (RED2018-102612-T), PID2019-106383GB-C44, FIS2017-83295-P and PGC2018-097520-A-I00 (cofnanced by EU FEDER funds), and from the Generalitat Valenciana under project PROMETEO/2018/123. A.O.R. acknowledges the fnancial support of the Spanish MINECO RyC-2016-20301 Ramon y Cajal Grant. Authors also thank Dr. Nicolescu and the Mineralogy and Meteoritic Department of the Yale Peabody Museum of Natural History for providing the mineral samples, the MALTA Consolider supercomputing centre and Compute Canada for computational resources, the General Services of Research Support (SEGAI) at La Laguna University and ALBA-CELLS synchrotron for providing beamtime under experiments 2020084419 and 2021024988. Tese experiments were performed at the MSPD beamline with the collaboration of ALBA staf

    Use of single-cell detritus (SCD) produced from Laminaria saccharina (L.) Lamouroux in feeding Ruditapes decussatus (L., 1758) seed clam

    Get PDF
    A production technique for single cell detritus (SCD) from Laminaria saccharina (L.) Lamouroux was developed based on the sequential action of two enzymes, endoglucanases and cellulases, and two bacteria isolated in our laboratories: CECT-5255 and CECT-5256, which have high levels of cellobiosic, proteolytic and alginolytic activity. Using this technique, L. saccharina meal is transformed into a suspension of algal cells and detritus of less than 20 m in diameter, which can easily be filtered and digested by bivalve molluscs. A feeding trial carried out with Ruditapes decussatus (L., 1758) seed clams showed that L. saccharina SCD, when used as their sole diet, got 40 % of the seed growth achieved with a microalgal diet (control diet). When the SCD was used in a mixed diet, it could substitute up to 90 % of the microalgae, with comparable or even higher growth rates than exclusive microalgal diets.En este estudio se desarrolla una técnica de producción de biotransformados de Laminaria saccharina (L.) Lamouroux basada en la acción secuencial de enzimas (endoglucanasas y celulasas) y dos bacterias aisladas en laboratorios del Instituto Español de Oceanografía: las cepas códigos CECT-5255 y CECT-5256 de la CECT, que presentan una alta actividad celobiósica, proteolítica y alginolítica. Con dicha técnica, la harina de L. saccharina se transforma en una suspensión de células libres y detritos algales de tamaño inferior a 20 m, perfectamente capturables y digeribles por los moluscos bivalvos. Los diversos ensayos realizados en la alimentación de semilla de la almeja Ruditapes decussatus (L., 1758) ponen de manifiesto que con este biotransformado de L. saccharina, utilizado como único alimento, se obtienen crecimientos de alrededor del 40 % del logrado con fitoplancton. Si se mezcla con fitoplancton, puede sustituir hasta el 90 % del alimento vivo obteniéndose crecimientos equivalentes, incluso superiores, a los de las dietas algales puras.Instituto Español de Oceanografí

    Clasificación microscópica de las lesiones cutáneas producidas por Hypoderma lineatum

    Get PDF
    Trabajo presentado a la: XXVII Reunión de la Sociedad Española de Anatomía Patológica Veterinaria. (Barcelona, España, 17 al 19 Junio, 2015).Peer Reviewe

    Differences in skin test reactions to official and defined antigens in guinea pigs exposed to non-tuberculous and tuberculous bacteria

    Get PDF
    The single and comparative intradermal tuberculin tests (SITT and CITT) are official in vivo tests for bovine tuberculosis (TB) diagnosis using bovine and avian purified protein derivatives (PPD-B and PPD-A). Infection with bacteria other than Mycobacterium tuberculosis complex (MTC) can result in nonspecific reactions to these tests. We evaluated the performance of the skin test with PPDs and new defined antigens in the guinea pig model. A standard dose (SD) of Rhodococcus equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis, M. avium subsp. avium, M. avium subsp. hominissuis, M. scrofulaceum, M. persicum, M. microti, M. caprae and M. bovis, and a higher dose (HD) of M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis were tested using PPD-B, PPD-A, P22, ESAT-6-CFP-10-Rv3615c peptide cocktail long (PCL) and fusion protein (FP). The SD of R. equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare and M. avium subsp. paratuberculosis did not cause any reactions. The HD of M. nonchromogenicum, M. monacense, M. intracellulare, and M. avium subsp. paratuberculosis and the SD of M. avium subsp. hominissuis, M. scrofulaceum and M. persicum, caused nonspecific reactions (SIT). A CITT interpretation would have considered M. avium complex and M. scrofulaceum groups negative, but not all individuals from M. nonchromogenicum HD, M. monacense HD and M. persicum SD groups. Only animals exposed to M. bovis and M. caprae reacted to PCL and FP. These results support the advantage of complementing or replacing PPD-B to improve specificity without losing sensitivity.info:eu-repo/semantics/publishedVersio

    Preparation of single cell detritus from Laminaria sacchat¡rina as a hatchery diet for bivlabe mollucs.

    Get PDF
    A high-yield technique is described for the elaboration of single cell detritus (SCD) from Laminaria saccharina, based on the sequential action of C1H, enzymes (endoglucanases and cellulases) and 2 bacteria showing a high degree of cellobiotic, proteolytic, and alginolytic activity (CECT 5255 and CECT 5256). Over 85% of dried particles of L. saccharina were transformed into a suspension of free cell and bacterial and detrital particles after 24 hours of bacterial activity with this technique. These particles were less than 20 μm in diameter, constituting a suitable diet for bivalve mollusks. After 72 hours 99% of the total particulate volume consisted of particles less than 20 μm in diameter. Tests of hatchery diets for the seed of clam Ruditapes decussatus revealed increases of 54% and 68% for live weight and length, respectively, when SCD from L. saccharina was used as the sole dietary component compared with a live phytoplankton diet. However, SCD from L. saccharina is not a suitable food for the larvae of R. decussatus.Postprint

    Pressure-induced amorphization of YVO4:Eu3+ nanoboxes

    Full text link
    This is an author-created, un-copyedited version of an article published in Nanotechnology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0957-4484/27/2/025701A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu3+ nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu3+ photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two D-5(0)-> F-7(0) photoluminescence peaks confirms the existence of two local environments for Eu3+, at least for the low-pressure phase. One environment is the expected for substituting Y3+ and the other is likely a disordered environment possibly found at the surface of the nanoboxes.This work has been performed under financial support from Spanish MINECO under the National Program of Materials (MAT2013-46649-C4-1/2/3/4-P) and the Consolider-Ingenio 2010 Program (MALTA CSD2007-00045). Funding by the Fundacion Caja Canarias (ENER-01) and the EU-FEDER funds is also acknowledged. JR-F thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship and NS thanks the German Research Foundation (DFG) for financial support (Project RA2585/1-1). We acknowledge Diamond Light Source for time on beamline I15 under proposals EE3652 and EE6517. Parts of this research were carried out at the light source PETRA III at DESY (Hamburg), a member of the Helmholtz Association (HFG). We would like to thank H-P Liermann and W Morgenroth for assistance in using beamline P02.2.Ruiz Fuertes, J.; Gomis, O.; León Luis, SF.; Schrodt, N.; Manjón Herrera, FJ.; Ray, S.; Santamaría Pérez, D.... (2016). Pressure-induced amorphization of YVO4:Eu3+ nanoboxes. Nanotechnology. 27(2):025701-1-025701-8. https://doi.org/10.1088/0957-4484/27/2/025701S025701-1025701-8272Piot, L., Le Floch, S., Cornier, T., Daniele, S., & Machon, D. (2013). Amorphization in Nanoparticles. The Journal of Physical Chemistry C, 117(21), 11133-11140. doi:10.1021/jp401121cZhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Yuan, H., Wang, K., Li, S., Tan, X., Li, Q., Yan, T., … Zou., B. (2012). Direct Zircon-to-Scheelite Structural Transformation in YPO4 and YPO4:Eu3+ Nanoparticles Under High Pressure. The Journal of Physical Chemistry C, 116(46), 24837-24844. doi:10.1021/jp3088995Mishra, A. K., Garg, N., Pandey, K. K., Shanavas, K. V., Tyagi, A. K., & Sharma, S. M. (2010). Zircon-monoclinic-scheelite transformation in nanocrystalline chromates. Physical Review B, 81(10). doi:10.1103/physrevb.81.104109Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701Mukherjee, S., Kim, K., & Nair, S. (2007). Short, Highly Ordered, Single-Walled Mixed-Oxide Nanotubes Assemble from Amorphous Nanoparticles. Journal of the American Chemical Society, 129(21), 6820-6826. doi:10.1021/ja070124cŞopu, D., Albe, K., Ritter, Y., & Gleiter, H. (2009). From nanoglasses to bulk massive glasses. Applied Physics Letters, 94(19), 191911. doi:10.1063/1.3130209Ozawa, L., & Itoh, M. (2003). Cathode Ray Tube Phosphors. Chemical Reviews, 103(10), 3835-3856. doi:10.1021/cr0203490Zhu, Y., Xu, W., Zhang, H., Wang, W., Tong, L., Xu, S., … Song, H. (2012). Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application. Applied Physics Letters, 100(8), 081104. doi:10.1063/1.3688167Khan, A. F., Haranath, D., Yadav, R., Singh, S., Chawla, S., & Dutta, V. (2008). Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layers. Applied Physics Letters, 93(7), 073103. doi:10.1063/1.2973163Cho, Y.-S., & Huh, Y.-D. (2011). Preparation of Transparent Red-Emitting YVO4:Eu Nanophosphor Suspensions. Bulletin of the Korean Chemical Society, 32(1), 335-337. doi:10.5012/bkcs.2011.32.1.335Jayaraman, A., Kourouklis, G. A., Espinosa, G. P., Cooper, A. S., & Van Uitert, L. G. (1987). A high-pressure Raman study of yttrium vanadate (YVO4) and the pressure-induced transition from the zircon-type to the scheelite-type structure. Journal of Physics and Chemistry of Solids, 48(8), 755-759. doi:10.1016/0022-3697(87)90072-2Wang, X., Loa, I., Syassen, K., Hanfland, M., & Ferrand, B. (2004). Structural properties of the zircon- and scheelite-type phases ofYVO4at high pressure. Physical Review B, 70(6). doi:10.1103/physrevb.70.064109Manjón, F. J., Rodríguez-Hernández, P., Muñoz, A., Romero, A. H., Errandonea, D., & Syassen, K. (2010). Lattice dynamics ofYVO4at high pressures. Physical Review B, 81(7). doi:10.1103/physrevb.81.075202Boehler, R. (2006). New diamond cell for single-crystal x-ray diffraction. Review of Scientific Instruments, 77(11), 115103. doi:10.1063/1.2372734Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242Qiu, X., Thompson, J. W., & Billinge, S. J. L. (2004). PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. Journal of Applied Crystallography, 37(4), 678-678. doi:10.1107/s0021889804011744Chupas, P. J., Qiu, X., Hanson, J. C., Lee, P. L., Grey, C. P., & Billinge, S. J. L. (2003). Rapid-acquisition pair distribution function (RA-PDF) analysis. Journal of Applied Crystallography, 36(6), 1342-1347. doi:10.1107/s0021889803017564Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Božin, E. S., Bloch, J., … Billinge, S. J. L. (2007). PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. Journal of Physics: Condensed Matter, 19(33), 335219. doi:10.1088/0953-8984/19/33/335219Trenque, I., Mornet, S., Duguet, E., & Gaudon, M. (2013). New Insights into Crystallite Size and Cell Parameters Correlation for ZnO Nanoparticles Obtained from Polyol-Mediated Synthesis. Inorganic Chemistry, 52(21), 12811-12817. doi:10.1021/ic402152fLangford, J. I., & Wilson, A. J. C. (1978). Scherrer after sixty years: A survey and some new results in the determination of crystallite size. Journal of Applied Crystallography, 11(2), 102-113. doi:10.1107/s0021889878012844Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Jeong, I.-K., Proffen, T., Mohiuddin-Jacobs, F., & Billinge, S. J. L. (1999). Measuring Correlated Atomic Motion Using X-ray Diffraction. The Journal of Physical Chemistry A, 103(7), 921-924. doi:10.1021/jp9836978Frogley, M. D., Sly, J. L., & Dunstan, D. J. (1998). Pressure dependence of the direct band gap in tetrahedral semiconductors. Physical Review B, 58(19), 12579-12582. doi:10.1103/physrevb.58.12579Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257Popescu, C., Sans, J. A., Errandonea, D., Segura, A., Villanueva, R., & Sapiña, F. (2014). Compressibility and Structural Stability of Nanocrystalline TiO2 Anatase Synthesized from Freeze-Dried Precursors. Inorganic Chemistry, 53(21), 11598-11603. doi:10.1021/ic501571uChen, G., Stump, N. A., Haire, R. G., Peterson, J. R., & Abraham, M. M. (1992). Pressure-induced phase transition in YVO4:Eu3+: A luminescence study at high pressure. Journal of Physics and Chemistry of Solids, 53(10), 1253-1257. doi:10.1016/0022-3697(92)90241-5Rivera-López, F., Martín, I. R., Da Silva, I., González-Silgo, C., Rodríguez-Mendoza, U. R., Lavín, V., … Fernández-Urban, J. (2006). Analysis of the Eu3+emission in a SrWO4laser matrix under pressure. High Pressure Research, 26(4), 355-359. doi:10.1080/08957950601105085Dieke, G. H., & Crosswhite, H. M. (1963). The Spectra of the Doubly and Triply Ionized Rare Earths. Applied Optics, 2(7), 675. doi:10.1364/ao.2.000675Lavı́n, V., Babu, P., Jayasankar, C. K., Martı́n, I. R., & Rodrı́guez, V. D. (2001). On the local structure of Eu3+ ions in oxyfluoride glasses. Comparison with fluoride and oxide glasses. The Journal of Chemical Physics, 115(23), 10935-10944. doi:10.1063/1.1420731Peacock, R. D. (s. f.). The intensities of lanthanide f ↔ f transitions. Rare Earths, 83-122. doi:10.1007/bfb0116556Oomen, E. W. J. L., & van Dongen, A. M. A. (1989). Europium (III) in oxide glasses. Journal of Non-Crystalline Solids, 111(2-3), 205-213. doi:10.1016/0022-3093(89)90282-2Song, H., Chen, B., Peng, H., & Zhang, J. (2002). Light-induced change of charge transfer band in nanocrystalline Y2O3:Eu3+. Applied Physics Letters, 81(10), 1776-1778. doi:10.1063/1.1501441Ray, S., León-Luis, S. F., Manjón, F. J., Mollar, M. A., Gomis, Ó., Rodríguez-Mendoza, U. R., … Lavín, V. (2014). Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method. Current Applied Physics, 14(1), 72-81. doi:10.1016/j.cap.2013.07.02
    corecore