254 research outputs found

    Growth rings in tropical trees : role of functional traits, environment, and phylogeny

    Get PDF
    Acknowledgments Financial support of the Centre National de la Recherche Scientifique (USR 3330), France, and from the Rufford Small Grants Foundation (UK) is acknowledged. We thank the private farmers and coffee plantation companies of Kodagu for providing permissions and logistical support for this project. We are grateful to N. Barathan for assistance with slide preparation and data entry, S. Aravajy for botanical assistance, S. Prasad and G. Orukaimoni for technical inputs, and A. Prathap, S. Shiva, B. Saravana, and P. Shiva for field assistance. The corresponding editor and three anonymous reviewers provided insightful comments that improved the manuscript.Peer reviewedPostprin

    Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets

    Get PDF
    We consider a dependent thinning of a regular point process with the aim of obtaining aggregation on the large scale and regularity on the small scale in the resulting target point process of retained points. Various parametric models for the underlying processes are suggested and the properties of the target point process are studied. Simulation and inference procedures are discussed when a realization of the target point process is observed, depending on whether the thinned points are observed or not. The paper extends previous work by Dietrich Stoyan on interrupted point processes

    Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions

    Full text link
    We introduce an iterative method for computing the first eigenpair (λp,ep)(\lambda_{p},e_{p}) for the pp-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq)(\mu_{q,}u_{q}) as qpq\rightarrow p^{-}, where uqu_{q} is the positive solution of the sublinear Lane-Emden equation Δpuq=μquqq1-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1} with same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of uqu_{q} to epe_{p} is in the C1C^{1}-norm and the rate of convergence of μq\mu_{q} to λp\lambda_{p} is at least O(pq)O(p-q). Numerical evidence is presented.Comment: Section 5 was rewritten. Jed Brown was added as autho

    Closing a gap in tropical forest biomass estimation : taking crown mass variation into account in pantropical allometries

    Get PDF
    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees = 45 Mg. This increase coincided with a progressive deviation between the pantropical biomass model estimations and actual tree mass. Taking a crown mass proxy into account in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot- level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far- from- negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost

    Test of a theoretical equation of state for elemental solids and liquids

    Full text link
    We propose a means for constructing highly accurate equations of state (EOS) for elemental solids and liquids essentially from first principles, based upon a particular decomposition of the underlying condensed matter Hamiltonian for the nuclei and electrons. We also point out that at low pressures the neglect of anharmonic and electron-phonon terms, both contained in this formalism, results in errors of less than 5% in the thermal parts of the thermodynamic functions. Then we explicitly display the forms of the remaining terms in the EOS, commenting on the use of experiment and electronic structure theory to evaluate them. We also construct an EOS for Aluminum and compare the resulting Hugoniot with data up to 5 Mbar, both to illustrate our method and to see whether the approximation of neglecting anharmonicity et al. remains viable to such high pressures. We find a level of agreement with experiment that is consistent with the low-pressure results.Comment: Minor revisions for consistency with published versio

    Beyond trait distances: Functional distinctiveness captures the outcome of plant competition

    Get PDF
    1. Functional trait distances between coexisting organisms reflect not only complementarity in the way they use resources, but also differences in their competitive abilities. Accordingly, absolute and relative trait distances have been widely used to capture the effects of niche dissimilarity and competitive hierarchies, respectively, on the performance of plants in competition. However, multiple dimensions of the plant phenotype are involved in these plant–plant interactions (PPI), challenging the use of relative trait distances to predict their outcomes. Furthermore, estimating the effects of competitive hierarchy on the performance of a group of coexisting plants remains particularly difficult since relative trait distances relate to the effects of a focal plant on another. 2. We argue that trait distinctiveness, an emerging facet of functional diversity that characterizes the eccentric position of a species (or genotype) in a phenotypic space, can reveal the unique role played by a given individual plant in a group of competing plants. We used the model crop species Oryza sativa spp. japonica to evaluate the ability of trait distances and trait distinctiveness to predict the outcome of intraspecific PPI on the performance of single genotype and genotype mixtures. We performed a screening experiment to characterize the phenotypic space of 49 rice genotypes based on 11 above-ground and root traits. We selected nine genotypes with contrasting positions in the phenotypic space and grew them in pots following a complete pairwise interaction design. 3. Relative distances and distinctiveness based on traits associated with light competition were by far the best predictors of the performance of single genotypes—taller genotypes that acquired resource faster being the best competitors—while absolute trait distances had no effect. These results indicate that competitive hierarchy for light dominates PPI in this experiment. Consistently, trait distinctiveness in plant height and age at flowering had the strongest, positive effects on mixture performance, confirming that functional distinctiveness captures the effects of trait hierarchies and asymmetric PPI at this scale. 4. Our findings shed new light on the role of trait diversity in regulating PPI and ecosystem processes and call for a greater consideration of functional distinctiveness in studies of coexistence mechanisms

    SINE RNA Induces Severe Developmental Defects in Arabidopsis thaliana and Interacts with HYL1 (DRB1), a Key Member of the DCL1 Complex

    Get PDF
    The proper temporal and spatial expression of genes during plant development is governed, in part, by the regulatory activities of various types of small RNAs produced by the different RNAi pathways. Here we report that transgenic Arabidopsis plants constitutively expressing the rapeseed SB1 SINE retroposon exhibit developmental defects resembling those observed in some RNAi mutants. We show that SB1 RNA interacts with HYL1 (DRB1), a double-stranded RNA-binding protein (dsRBP) that associates with the Dicer homologue DCL1 to produce microRNAs. RNase V1 protection assays mapped the binding site of HYL1 to a SB1 region that mimics the hairpin structure of microRNA precursors. We also show that HYL1, upon binding to RNA substrates, induces conformational changes that force single-stranded RNA regions to adopt a structured helix-like conformation. Xenopus laevis ADAR1, but not Arabidopsis DRB4, binds SB1 RNA in the same region as HYL1, suggesting that SINE RNAs bind only a subset of dsRBPs. Consistently, DCL4-DRB4-dependent miRNA accumulation was unchanged in SB1 transgenic Arabidopsis, whereas DCL1-HYL1-dependent miRNA and DCL1-HYL1-DCL4-DRB4-dependent tasiRNA accumulation was decreased. We propose that SINE RNA can modulate the activity of the RNAi pathways in plants and possibly in other eukaryotes

    Determinants of Disease Presentation and Outcome during Cryptococcosis: The CryptoA/D Study

    Get PDF
    BACKGROUND: Cryptococcosis is a life-threatening opportunistic fungal infection in both HIV-positive and -negative patients. Information on clinical presentation and therapeutic guidelines, derived mostly from clinical trials performed before introduction of highly active antiretroviral therapy in patients with cryptococcal meningoencephalitis, is missing data on extrameningeal involvement and infections by serotype D as opposed to serotype A of Cryptococcus neoformans. METHODS AND FINDINGS: The prospective multicenter study CryptoA/D was designed in France (1997–2001) to analyse the factors influencing clinical presentation and outcome without the bias of inclusion into therapeutic trials. Of the 230 patients enrolled, 177 (77%) were HIV-positive, 50 (22%) were female, and 161 (72.5%) were infected with serotype A. Based on culture results at baseline, cryptococcosis was more severe in men, in HIV-positive patients, and in patients infected with serotype A. Factors independently associated with mycological failure at week 2 independent of HIV status were initial dissemination (OR, 2.4 [95% confidence interval (CI), 1.2–4.9]), high (>1:512) serum antigen titre (OR, 2.6 [1.3–5.4]), and lack of flucytosine during induction therapy (OR, 3.8 [1.9–7.8]). The three-month survival was shorter in patients with abnormal neurology or brain imaging at baseline, and in those with haematological malignancy. CONCLUSIONS: Thus sex, HIV status, and infecting serotype are major determinants of presentation and outcome during cryptococcosis. We propose a modification of current guidelines for the initial management of cryptococcosis based on systematic fungal burden evaluation
    corecore