9 research outputs found

    Microarray based mutational analysis of patients with methylmalonic acidemia: Identification of 10 novel mutations

    No full text
    Dursun, Ali/0000-0003-1104-9902; Ozgul, Riza Koksal/0000-0002-0283-635XWOS: 000307322100004PubMed: 22727635Methylmalonic acidemia is an autosomal recessive metabolic disorder affecting the propionate oxidation pathway in the catabolism of several amino acids, odd-chain fatty acids, and cholesterol. Methylmalonic acidemia is characterized by elevated levels of methylmalonic acid in the blood and urine. Mutations in the MUT gene, encoding methylmalonyl-CoA mutase carries out isomerization of L-methylmalonyl-CoA to succinyl-CoA, cause methylmalonic acidemia. In this study, 30 Turkish patients diagnosed with mut methylmalonic acidemia were screened for mutations using custom designed sequencing microarrays. The study resulted in detection of 22 different mutations, 10 of which were novel: p.Q132*, p.A137G, c.753 + 1T, p.T387I, p.Q514E, p.P615L, p.D625V, c.1962_1963delTC, p.L674F, and c.2115_2116insA. The most common, p.P615T, was identified in 28.0% of patients. These results suggest that microarray based sequencing is a useful tool for the detection of mutations in MUT in patients with mut methylmalonic acidemia. (C) 2012 Elsevier Inc. All rights reserved

    The phenotypic and molecular genetic spectrum of Alstrom syndrome in 44 Turkish kindreds and a literature review of Alstrom syndrome in Turkey

    Get PDF
    Alstrom syndrome (ALMS) is an autosomal recessive disease characterized by multiple organ involvement, including neurosensory vision and hearing loss, childhood obesity, diabetes mellitus, cardiomyopathy, hypogonadism, and pulmonary, hepatic, renal failure and systemic fibrosis. Alstrom Syndrome is caused by mutations in ALMS1, and ALMS1 protein is thought to have a role in microtubule organization, intraflagellar transport, endosome recycling and cell cycle regulation. Here, we report extensive phenotypic and genetic analysis of a large cohort of Turkish patients with ALMS. We evaluated 61 Turkish patients, including 11 previously reported, for both clinical spectrum and mutations in ALMS1. To reveal the molecular diagnosis of the patients, different approaches were used in combination, a cohort of patients were screened by the gene array to detect the common mutations in ALMS1 gene, then in patients having any of the common ALMS1 mutations were subjected to direct DNA sequencing or next-generation sequencing for the screening of mutations in all coding regions of the gene. In total, 20 distinct disease-causing nucleotide changes in ALMS1 have been identified, eight of which are novel, thereby increasing the reported ALMS1 mutations by 6% (8/120). Five disease-causing variants were identified in more than one kindred, but most of the alleles were unique to each single patient and identified only once (16/20). So far, 16 mutations identified were specific to the Turkish population, and four have also been reported in other ethnicities. In addition, 49 variants of uncertain pathogenicity were noted, and four of these were very rare and probably or likely deleterious according to in silico mutation prediction analyses. ALMS has a relatively high incidence in Turkey and the present study shows that the ALMS1 mutations are largely heterogeneous; thus, these data from a particular population may provide a unique source for the identification of additional mutations underlying Alstrom Syndrome and contribute to genotype-phenotype correlation studies

    Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder

    No full text
    RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.status: publishe

    Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder

    No full text
    RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior

    Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder

    No full text
    corecore