175 research outputs found

    Separated at Birth? Microarray Analysis of Two Strikingly Similar Yersinia Species

    Get PDF
    This is the final version of the article. Available from [publisher] via the DOI in this record.--We acknowledge financial support for this project from DSTL and The Wellcome Trust. We also acknowledge BµG@S (the Bacterial Microarray Group at St George’s) and The Wellcome Trust for funding their work; Keith Vass from the University of Glasgow; and Mike Prentice from St. Bartholomew’s Hospital for his advice and expertise in all things Yersinia

    Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote

    Get PDF
    The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection of a jellyfish venom-induced cell death pathway by screening for host components required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis. We identify the peripheral membrane protein ATP2B1, a calcium transporting ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents venom action and confers long lasting protection. Informatics analysis of host genes required for venom cytotoxicity reveal pathways not previously implicated in cell death. We also discover a venom antidote that functions up to 15 minutes after exposure and suppresses tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR screening to investigate venom mechanisms of action and to rapidly identify new medicines

    Biochemical studies on Francisella tularensis RelA in (p)ppGpp Biosynthesis

    Get PDF
    2 ABSTRACT The bacterial stringent response is induced by nutrient deprivation and is mediated by enzymes of the RSH superfamily that control concentrations of the "alarmones" (p)ppGpp. This regulatory pathway is present in the vast majority of pathogens and has been proposed as a potential antibacterial target. Current understanding of RelA mediated responses are based on biochemical studies using Escherichia coli as a model. In comparison, the Francisella tularensis RelA sequence contains a truncated regulatory C-terminal region and an unusual synthetase motif (EXSD). Biochemical analysis of Francisella tularensis RelA showed the similarities and differences of this enzyme compared to the model RelA from Escherichia coli. Purification of the enzyme yielded a stable dimer capable of reaching concentrations of 10 mg/mL. In contrast to other enzymes from the RelA/SpoT homologue superfamily, activity assays with F. tularensis RelA demonstrate a high degree of specificity for GTP as a pyrophosphate acceptor, with no measurable turnover for GDP. Steady state kinetic analysis of F. tularensis RelA gave saturation activity curves that best fitted a sigmoidal function. This kinetic profile can result from allosteric regulation and further measurements with potential allosteric regulators demonstrated activation by ppGpp with an EC 50 of 60 ± 1.9 μM. Activation of F. tularensis RelA by stalled ribosomal complexes formed with ribosomes purified from Escherichia coli MRE600 was observed, but interestingly, significantly weaker activation with ribosomes isolated from Francisella philomiragia

    Eschar and neck lymphadenopathy caused by Francisella tularensis after a tick bite: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In 25 to 35% of cases, the aetiological agent of scalp eschar and neck lymphadenopathy after a tick bite remains undetermined. To date, <it>Rickettsia slovaca</it>, <it>Rickettsia raoultii </it>and more recently <it>Bartonella henselae </it>have been associated with this syndrome.</p> <p>Case presentation</p> <p>A four-year-old Caucasian boy was admitted to hospital with fever, vomiting and abdominal pain. On physical examination, an inflammatory and suppurating eschar was seen on the scalp, with multiple enlarged cervical lymph nodes on both sides. Although no tick was found in this scalp lesion, a diagnosis of tick-borne lymphadenopathy was suggested, and explored by serology testing and polymerase chain reaction of a biopsy from the eschar. <it>Francisella tularensis </it>DNA was found in the skin biopsy and the serology showed titres consistent with tularaemia.</p> <p>Conclusion</p> <p>This is, to the best of our knowledge, the first reported case of scalp eschar and neck lymphadenopathy after tick bite infection caused by <it>F. tularensis.</it></p

    Synthetic routes, characterization and photophysical properties of luminescent, surface functionalized nanodiamonds

    Get PDF
    The functionalization of small diameter (ca. 50 nm) polycarboxylated nanodiamond particles using amide coupling methodologies in both water and acetonitrile solvent has been investigated. In this manner, the surfaces of nanodiamond particles were adorned with different luminescent moieties, including a green fluorescent 1,8-naphthalimide species (Nap-1), and a red emitting ruthenium(II) tris-bipyridine complex (Ru-1), as well as dual functionalization with both luminophores. Comprehensive characterization of the surface functionalized nanodiamonds has been achieved using a combination of dynamic light scattering, nanoparticle tracking analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, zeta potential measurements, microwave plasma atomic emission spectroscopy and time-resolved photophysics. The tendency of the functionalized nanodiamonds to aggregate reflects the degree of surface substitution, yielding small aggregates with typical particle sizes ca. 150 nm. This is likely to be driven by the reduction of the zeta potential, concomitant with the conversion of surface charged carboxylate groups to neutral amide functions. The results show that luminescent nanodiamond materials can be synthesised with tuneable photophysical properties

    An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions

    Get PDF
    Background The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans

    Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia

    Get PDF
    Epsilon toxin (Etx) is a β-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia

    Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model

    Get PDF
    The increasing rate in antibiotic-resistant bacterial strains has become an imperative health issue. Thus, pharmaceutical industries have focussed their efforts to find new potent, non-toxic compounds to treat bacterial infections. Antimicrobial peptides (AMPs) are promising candidates in the fight against antibiotic-resistant pathogens due to their low toxicity, broad range of activity and unspecific mechanism of action. In this context, bioinformatics' strategies can inspire the design of new peptide leads with enhanced activity. Here, we describe an artificial neural network approach, based on the AMP's physicochemical characteristics, that is able not only to identify active peptides but also to assess its antimicrobial potency. The physicochemical properties considered are directly derived from the peptide sequence and comprise a complete set of parameters that accurately describe AMPs. Most interesting, the results obtained dovetail with a model for the AMP's mechanism of action that takes into account new concepts such as peptide aggregation. Moreover, this classification system displays high accuracy and is well correlated with the experimentally reported data. All together, these results suggest that the physicochemical properties of AMPs determine its action. In addition, we conclude that sequence derived parameters are enough to characterize antimicrobial peptides

    Evasion of IFN-γ Signaling by Francisella novicida Is Dependent upon Francisella Outer Membrane Protein C

    Get PDF
    Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918.The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and µmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed.F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components
    corecore