1,724 research outputs found

    Introduction

    Get PDF

    The Snf2 Homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme

    Get PDF
    The Saccharomyces cerevisiae Fun30 (Function unknown now 30) protein shares homology with an extended family of Snf2-related ATPases. Here we report the purification of Fun30 principally as a homodimer with a molecular mass of about 250 kDa. Biochemical characterization of this complex reveals that it has ATPase activity stimulated by both DNA and chromatin. Consistent with this, it also binds to both DNA and chromatin. The Fun30 complex also exhibits activity in ATP-dependent chromatin remodeling assays. Interestingly, its activity in histone dimer exchange is high relative to the ability to reposition nucleosomes. Fun30 also possesses a weakly conserved CUE motif suggesting that it may interact specifically with ubiquitinylated proteins. However, in vitro Fun30 was found to have no specificity in its interaction with ubiquitinylated histones

    Snf2 family ATPases and DExx box helicases:differences and unifying concepts from high-resolution crystal structures

    Get PDF
    Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA–protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA. Crystal structures suggest that these enzymes travel along the minor groove, a process that can generate the torque or energy in remodelling processes. We review the recent structural and biochemical findings which suggest a common mechanistic basis underlies the action of many of both Snf2 family and DExx box helicases

    Chandra and Spitzer unveil heavily obscured quasars in the SWIRE/Chandra Survey

    Get PDF
    Using the large multi-wavelength data set in the chandra/SWIRE Survey (0.6 square degrees in the Lockman Hole), we show evidence for the existence of highly obscured (Compton-thick) AGN, estimate a lower limit to their surface density and characterize their multi-wavelength properties. Two independent selection methods based on the X-ray and infrared spectral properties are presented. The two selected samples contain 1) 5 X-ray sources with hard X-ray spectra and column densities > 10^24 cm-2, and 2) 120 infrared sources with red and AGN-dominated infrared spectral energy distributions (SEDs). We estimate a surface density of at least 25 Compton-thick AGN per square degree detected in the infrared in the chandra/SWIRE field of which ~40% show distinct AGN signatures in their optical/near-infrared SEDs, the remainings being dominated by the host-galaxy emission. Only ~33% of all Compton-thick AGN are detected in the X-rays at our depth (F(0.3-8 keV)>10^-15 erg/cm2/s. We report the discovery of two sources in our sample of Compton-thick AGN, SWIRE_J104409.95+585224.8 (z=2.54) and SWIRE_J104406.30+583954.1 (z=2.43), which are the most luminous Compton-thick AGN at high-z currently known. The properties of these two sources are discussed in detail with an analysis of their spectra, SEDs, luminosities and black-hole masses.Comment: ApJ accepted (to appear in May 2006 issue, vol. 642, of ApJ) Figures 2, 3, and 14 have been degraded due to space consideration

    Complete Multiwavelength Characterization of Faint Chandra X-ray Sources Seen in the Spitzer Wide-Area IR Extragalactic (SWIRE) Survey

    Full text link
    We exploit deep combined observations with Spitzer and Chandra of the SWIRE survey in the ELAIS-N1 region, to investigate the nature of the faint X-ray and IR sources in common, to identify AGN/starburst diagnostics, and to study the sources of the X-ray and IR cosmic backgrounds. In the 17'x17' area of the Chandra ACIS-I image there are 3400 SWIRE near-IR sources with 4 sigma detections in at least 2 IRAC bands and 988 sources detected at 24micron with MIPS brighter than 0.1 mJy. Of these, 102 IRAC and 59 MIPS sources have Chandra counterparts, out of a total of 122 X-ray sources present in the area with S(0.5-8 kev)>10^(-15) erg/cm^2/s. We have constructed SEDs for each source using data from the 4 IRAC wavebands, Chandra fluxes, and optical follow-up data in the wavebands U, g', r', i', Z, and H. We fit a number of spectral templates to the SEDs at optical and infrared wavelengths to determine photometric redshifts and spectral categories, and also make use of diagnostics based on the X-ray luminosities, hardness ratios, X-ray to infrared spectral slopes and optical morphologies. Although we have spectroscopic redshifts for only a minority of the Chandra sources, the available SEDs constrain the redshifts for most of the sample sources, which turn out to be typically at 0.5<z<2. We find that 39% of the Chandra sources are dominated by type-1 AGN emission, 23% display optical/IR spectra typical of type-2 AGNs, while the remaining 38% fraction show starburst-like or even normal galaxy spectra. Since we prove that all these galaxies are dominated by AGN emission in X-rays this brings the fraction of type-1 AGNs to be 80% of the type-2: even assuming that all the Chandra sources undetected by Spitzer are type-2 AGNs, the type-1 fraction would exceed 1/3 of the total population (abridged).Comment: Accepted for publication in AJ, March 2005 issu

    SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey

    Get PDF
    The SIRTF Wide-Area Infrared Extragalactic Survey (SWIRE), the largest SIRTF Legacy program, is a wide-area imaging survey to trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and active galactic nuclei (AGNs) as a function of environment, from redshifts to the current z ∌ 3 epoch. SWIRE will survey seven high-latitude fields, totaling 60–65 deg2 in all seven SIRTF bands: Infrared Array Camera (IRAC) 3.6, 4.5, 5.6, and 8 mm and Multiband Imaging Photometer for SIRTF (MIPS) 24, 70, and 160 mm. Extensive modeling suggests that the Legacy Extragalactic Catalog may contain in excess of 2 million IR-selected galaxies, dominated by (1) ∌150,000 luminous infrared galaxies (LIRGs; LFIR 1 1011 L,) detected by MIPS (and significantly more detected by IRAC), ∌7000 of these with ; (2) 1 million IRAC- z 1 2 detected early-type galaxies (∌ with and ∌10,000 with ); and (3) ∌20,000 classical AGNs 5 2 # 10 z 1 1 z 1 2 detected with MIPS, plus significantly more dust-obscured quasi-stellar objects/AGNs among the LIRGs. SWIRE will provide an unprecedented view of the evolution of galaxies, structure, and AGNs. The key scientific goals of SWIRE are (1) to determine the evolution of actively star forming and passively evolving galaxies in order to understand the history of galaxy formation in the context of cosmic structure formation; (2) to determine the evolution of the spatial distribution and clustering of evolved galaxies, starbursts, and AGNs in the key redshift range over which much of cosmic evolution has occurred; and (3) to 0.5 ! z ! 3 determine the evolutionary relationship between “normal galaxies” and AGNs and the contribution of AGN accretion energy versus stellar nucleosynthesis to the cosmic backgrounds. The large area of SWIRE is important to establish statistically significant population samples over enough volume cells that we can resolve the star formation history as a function of epoch and environment, i.e., in the context of structure formation. The large volume is also optimized for finding rare objects. The SWIRE fields are likely to become the next generation of large “cosmic windows” into the extragalactic sky. They have been uniquely selected to minimize Galactic cirrus emission over large scales. The Galaxy Evolution Explorer will observe them as part of its deep 100 deg2 survey, as will Herschel. SWIRE includes ∌9 deg2 of the unique large-area XMM Large Scale Structure hard X-ray imaging survey and is partly covered by the UKIDSS deep J and K survey. An extensive optical/near-IR imaging program is underway from the ground. The SWIRE data are nonproprietary; catalogs and images will be released twice yearly, beginning about 11 months after SIRTF launch. Details of the data products and release schedule are presented

    The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4

    Get PDF
    In order to gain insight into the function of the Saccharomyces cerevisiae SWI/SNF complex, we have identified DNA sequences to which it is bound genomewide. One surprising observation is that the complex is enriched at the centromeres of each chromosome. Deletion of the gene encoding the Snf2 subunit of the complex was found to cause partial redistribution of the centromeric histone variant Cse4 to sites on chromosome arms. Cultures of snf2Δ yeast were found to progress through mitosis slowly. This was dependent on the mitotic checkpoint protein Mad2. In the absence of Mad2, defects in chromosome segregation were observed. In the absence of Snf2, chromatin organisation at centromeres is less distinct. In particular, hypersensitive sites flanking the Cse4 containing nucleosomes are less pronounced. Furthermore, SWI/SNF complex was found to be especially effective in the dissociation of Cse4 containing chromatin in vitro. This suggests a role for Snf2 in the maintenance of point centromeres involving the removal of Cse4 from ectopic sites

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
    • 

    corecore