307 research outputs found

    National-Scale Rainfall-Triggered Landslide Susceptibility and Exposure in Nepal

    Get PDF
    Nepal is one of the most landslide-prone countries in the world, with year-on-year impacts resulting in loss of life and imposing a chronic impediment to sustainable livelihoods. Living with landslides is a daily reality for an increasing number of people, so establishing the nature of landslide hazard and risk is essential. Here we develop a model of landslide susceptibility for Nepal and use this to generate a nationwide geographical profile of exposure to rainfall-triggered landslides. We model landslide susceptibility using a fuzzy overlay approach based on freely-available topographic data, trained on an inventory of mapped landslides, and combine this with high resolution population and building data to describe the spatial distribution of exposure to landslides. We find that whilst landslide susceptibility is highest in the High Himalaya, exposure is highest within the Middle Hills, but this is highly spatially variable and skewed to on average relatively low values. Around 4 × 106 Nepalis (∼15\% of the population) live in areas considered to be at moderate or higher degree of exposure to landsliding (>0.25 of the maximum), and critically this number is highly sensitive to even small variations in landslide susceptibility. Our results show a complex relationship between landslides and buildings, that implies wider complexity in the association between physical exposure to landslides and poverty. This analysis for the first time brings into focus the geography of the landslide exposure and risk case load in Nepal, and demonstrates limitations of assessing future risk based on limited records of previous events

    Lack of gene-language correlation due to reciprocal female but directional male admixture in Austronesians and non-Austronesians of East Timor

    Get PDF
    Nusa Tenggara, including East Timor, located at the crossroad between Island Southeast Asia, Near Oceania, and Australia, are characterized by a complex cultural structure harbouring speakers from two different major linguistic groups of different geographic origins (Austronesian (AN) and non-Austronesian (NAN)). This provides suitable possibilities to study gene-language relationship; however, previous studies from other parts of Nusa Tenggara reported conflicting evidence about gene-language correlation in this region. Aiming to investigate gene-language relationships including sex-mediated aspects in East Timor, we analysed the paternally inherited non-recombining part of the Y chromosome (NRY) and the maternally inherited mitochondrial (mt) DNA in a representative collection of AN-and NAN-speaking groups. Y-SNP (single-nucleotide polymorphism) data were newly generated for 273 samples and combined with previously established Y-STR (short tandem repeat) data of the same samples, and with previously established mtDNA data of 290 different samples with, however, very similar representation of geographic and linguistic coverage of the country. We found NRY and mtDNA haplogroups of previously described putative East/Southeast Asian (E/SEA) and Near Oceanian (NO) origins in both AN and NAN speakers of East Timor, albeit in different proportions, suggesting reciprocal genetic admixture between both linguistic groups for females, but directional admixture for males. Our data underline the dual genetic origin of East Timorese in E/SEA and NO, and highlight that substantial genetic admixtur

    Uniparental Genetic Heritage of Belarusians: Encounter of Rare Middle Eastern Matrilineages with a Central European Mitochondrial DNA Pool

    Get PDF
    Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively

    Complete mitochondrial DNA sequences provide new insights into the Polynesian motif and the peopling of Madagascar

    Get PDF
    More than a decade of mitochondrial DNA (mtDNA) studies have given the 'Polynesian motif' renowned status as a marker for tracing the late-Holocene expansion of Austronesian speaking populations. Despite considerable research on the Polynesian motif in Oceania, there has been little equivalent work on the western edge of its expansion - leaving major issues unresolved regarding the motif's evolutionary history. This has also led to considerable uncertainty regarding the settlement of Madagascar. In this study, we assess mtDNA variation in 266 individuals from three Malagasy ethnic groups: the Mikea, Vezo, and Merina. Complete mtDNA genome sequencing reveals a new variant of the Polynesian motif in Madagascar; two coding region mutations define a Malagasy-specific sub-branch. This newly defined 'Malagasy motif' occurs at high frequency in all three ethnic groups (13-50%), and its phylogenetic position, geographic distribution, and estimated age all support a recent origin, but without conclusively identifying a specific source region. Nevertheless, the haplotype's limited diversity, similar to those of other mtDNA haplogroups found in our Malagasy groups, best supports a small number of initial settlers arriving to Madagascar through the same migratory process. Finally, the discovery of this lineage provides a set of new polymorphic positions to help localize the Austronesian ancestors of the Malagasy, as well as uncover the origin and evolution of the Polynesian motif itself

    Mitochondrial DNA Variant Discovery and Evaluation in Human Cardiomyopathies through Next-Generation Sequencing

    Get PDF
    Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche's 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease

    New Insights into the Lake Chad Basin Population Structure Revealed by High-Throughput Genotyping of Mitochondrial DNA Coding SNPs

    Get PDF
    BACKGROUND: Located in the Sudan belt, the Chad Basin forms a remarkable ecosystem, where several unique agricultural and pastoral techniques have been developed. Both from an archaeological and a genetic point of view, this region has been interpreted to be the center of a bidirectional corridor connecting West and East Africa, as well as a meeting point for populations coming from North Africa through the Saharan desert. METHODOLOGY/PRINCIPAL FINDINGS: Samples from twelve ethnic groups from the Chad Basin (n = 542) have been high-throughput genotyped for 230 coding region mitochondrial DNA (mtDNA) Single Nucleotide Polymorphisms (mtSNPs) using Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry. This set of mtSNPs allowed for much better phylogenetic resolution than previous studies of this geographic region, enabling new insights into its population history. Notable haplogroup (hg) heterogeneity has been observed in the Chad Basin mirroring the different demographic histories of these ethnic groups. As estimated using a Bayesian framework, nomadic populations showed negative growth which was not always correlated to their estimated effective population sizes. Nomads also showed lower diversity values than sedentary groups. CONCLUSIONS/SIGNIFICANCE: Compared to sedentary population, nomads showed signals of stronger genetic drift occurring in their ancestral populations. These populations, however, retained more haplotype diversity in their hypervariable segments I (HVS-I), but not their mtSNPs, suggesting a more ancestral ethnogenesis. Whereas the nomadic population showed a higher Mediterranean influence signaled mainly by sub-lineages of M1, R0, U6, and U5, the other populations showed a more consistent sub-Saharan pattern. Although lifestyle may have an influence on diversity patterns and hg composition, analysis of molecular variance has not identified these differences. The present study indicates that analysis of mtSNPs at high resolution could be a fast and extensive approach for screening variation in population studies where labor-intensive techniques such as entire genome sequencing remain unfeasible

    Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny

    Get PDF
    Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. Owing to a high mutation rate, mtDNA defects may occur at any nucleotide in its 16 569 bp sequence. Complete mtDNA sequencing may detect pathogenic mutations, which can be difficult to interpret because of normal ethnic/geographic-associated haplogroup variation. Our goal is to show how to identify candidate mtDNA mutations by sorting out polymorphisms using readily available online tools. The purpose of this approach is to help investigators in prioritizing mtDNA variants for functional analysis to establish pathogenicity. We analyzed complete mtDNA sequences from 29 Italian patients with mitochondrial cardiomyopathy or suspected disease. Using MITOMASTER and PhyloTree, we characterized 593 substitution variants by haplogroup and allele frequencies to identify all novel, non-haplogroup-associated variants. MITOMASTER permitted determination of each variant's location, amino acid change and evolutionary conservation. We found that 98% of variants were common or rare, haplogroup-associated variants, and thus unlikely to be primary cause in 80% of cases. Six variants were novel, non-haplogroup variants and thus possible contributors to disease etiology. Two with the greatest pathogenic potential were heteroplasmic, nonsynonymous variants: m.15132T>C in MT-CYB for a patient with hypertrophic dilated cardiomyopathy and m.6570G>T in MT-CO1 for a patient with myopathy. In summary, we have used our automated information system, MITOMASTER, to make a preliminary distinction between normal mtDNA variation and pathogenic mutations in patient samples; this fast and easy approach allowed us to select the variants for traditional analysis to establish pathogenicity

    Papuan mitochondrial genomes and the settlement of Sahul

    Get PDF
    New Guineans represent one of the oldest locally continuous populations outside Africa, harboring among the greatest linguistic and genetic diversity on the planet. Archeological and genetic evidence suggest that their ancestors reached Sahul (present day New Guinea and Australia) by at least 55,000 years ago (kya). However, little is known about this early settlement phase or subsequent dispersal and population structuring over the subsequent period of time. Here we report 379 complete Papuan mitochondrial genomes from across Papua New Guinea, which allow us to reconstruct the phylogenetic and phylogeographic history of northern Sahul. Our results support the arrival of two groups of settlers in Sahul within the same broad time window (50–65 kya), each carrying a different set of maternal lineages and settling Northern and Southern Sahul separately. Strong geographic structure in northern Sahul remains visible today, indicating limited dispersal over time despite major climatic, cultural, and historical changes. However, following a period of isolation lasting nearly 20 ky after initial settlement, environmental changes postdating the Last Glacial Maximum stimulated diversification of mtDNA lineages and greater interactions within and beyond Northern Sahul, to Southern Sahul, Wallacea and beyond. Later, in the Holocene, populations from New Guinea, in contrast to those of Australia, participated in early interactions with incoming Asian populations from Island Southeast Asia and continuing into Oceania

    Mitochondrial Haplogroups and Control Region Polymorphisms in Age-Related Macular Degeneration: A Case-Control Study

    Get PDF
    Background: Onset and development of the multifactorial disease age-related macular degeneration (AMD) are highly interrelated with mitochondrial functions such as energy production and free radical turnover. Mitochondrial dysfunction and overproduction of reactive oxygen species may contribute to destruction of the retinal pigment epithelium, retinal atrophy and choroidal neovascularization, leading to AMD. Consequently, polymorphisms of the mitochondrial genome (mtDNA) are postulated to be susceptibility factors for this disease. Previous studies from Australia and the United States detected associations of mitochondrial haplogroups with AMD. The aim of the present study was to test these associations in Middle European Caucasians. Methodology/Principal Findings: Mitochondrial haplogroups (combinations of mtDNA polymorphisms) and mitochondrial CR polymorphisms were analyzed in 200 patients with wet AMD (choroidal neovascularization, CNV), in 66 patients with dry AMD, and in 385 controls from Austria by means of multiplex primer extension analysis and sequencing, respectively. In patients with CNV, haplogroup H was found to be significantly less frequent compared to controls, and haplogroup J showed a trend toward a higher frequency compared to controls. Five CR polymorphisms were found to differ significantly in the two study populations compared to controls, and all, except one (T152C), are linked to those haplogroups. Conclusions/Significance: It can be concluded that haplogroup J is a risk factor for AMD, whereas haplogroup H seems t

    An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy

    Get PDF
    Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage
    corecore