177 research outputs found

    Understanding Charge Transfer in Donor-Acceptor/Metal Systems: A Combined Theoretical and Experimental Study

    Get PDF
    We develop an effective potential approach for assessing the flow of charge within a two-dimensional donor-acceptor/metal network based on core-level shifts. To do so, we perform both density functional theory (DFT) calculations and x-ray photoemission spectroscopy (XPS) measurements of the core-level shifts for three different monolayers adsorbed on a Ag substrate. Specifically, we consider perfluorinated pentacene (PFP), copper phthalocyanine (CuPc) and their 1:1 mixture (PFP+CuPc) adsorbed on Ag(111).Comment: 12 pages, 10 figure

    Nest predation research:Recent findings and future perspectives

    Get PDF
    Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds

    Probing the Roughness of Porphyrin Thin Films with X-ray Photoelectron Spectroscopy

    Get PDF
    Thin-film growth of molecular systems is of interest for many applications, such as for instance organic electronics. In this study, we demonstrate how X-ray photoelectron spectroscopy (XPS) can be used to study the growth behavior of such molecular systems. In XPS, coverages are often calculated assuming a uniform thickness across a surface. This results in an error for rough films, and the magnitude of this error depends on the kinetic energy of the photoelectrons analyzed. We have used this kinetic-energy dependency to estimate the roughnesses of thin porphyrin films grown on rutile TiO2(110). We used two different molecules: cobalt (II) monocarboxyphenyl-10,15,20-triphenylporphyrin (CoMCTPP), with carboxylic-acid anchor groups, and cobalt (II) tetraphenylporphyrin (CoTPP), without anchor groups. We find CoMCTPP to grow as rough films at room temperature across the studied coverage range, whereas for CoTPP the first two layers remain smooth and even; depositing additional CoTPP results in rough films. Although, XPS is not a common technique for measuring roughness, it is fast and provides information of both roughness and thickness in one measurement.Fil: Kataev, Elmar. Universitat Erlangen-Nuremberg; AlemaniaFil: Wechsler, Daniel. Universitat Erlangen-Nuremberg; AlemaniaFil: Williams, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Köbl, Julia. Universitat Erlangen-Nuremberg; AlemaniaFil: Tsud, Natalia. Karlova Univerzita (cuni); República ChecaFil: Franchi, Stefano. Istituto di Struttura della Materia; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Steinruck, Hans Peter. Universitat Erlangen-Nuremberg; AlemaniaFil: Lytken, Ole. Universitat Erlangen-Nuremberg; Alemani

    Pauli's Principle in Probe Microscopy

    Get PDF
    Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the "Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy", a book which is part of the "Advances in Atom and Single Molecule Machines" series published by Springer [http://www.springer.com/series/10425]. To be published late 201

    Predicting long-term disease control in transplant-ineligible patients with multiple myeloma: impact of an MGUS-like signature

    Get PDF
    Disease control at 5 years would be a desirable endpoint for elderly multiple myeloma (MM) patients, but biomarkers predicting this are not defined. Therefore, to gain further insights in this endpoint, a population of 498 newly diagnosed transplant-ineligible patients enrolled in two Spanish trials (GEM2005MAS65 and GEM2010MAS65), has been analyzed. Among the 435 patients included in this post-hoc study, 18.6% remained alive and progression free after 5 years of treatment initiation. In these patients, overall survival (OS) rate at 10 years was 60.8% as compared with 11.8% for those progressing within the first 5 years. Hemoglobin (Hb) = 12 g/dl (OR 2.74, p = 0.001) and MGUS-like profile (OR 4.18, p = 0.005) were the two baseline variables associated with long-term disease-free survival. Upon including depth of response (and MRD), Hb = 12 g/dl (OR 2.27) and MGUS-like signature (OR 7.48) retained their predictive value along with MRD negativity (OR 5.18). This study shows that despite the use of novel agents, the probability of disease control at 5 years is still restricted to a small fraction (18.6%) of elderly MM patients. Since this endpoint is associated with higher rates of OS, this study provides important information about diagnostic and post-treatment biomarkers helpful in predicting the likelihood of disease control at 5 years

    A precision medicine test predicts clinical response after idarubicin and cytarabine induction therapy in AML patients

    Get PDF
    Complete remission (CR) after induction therapy is the first treatment goal in acute myeloid leukemia (AML) patients and has prognostic impact. Our purpose is to determine the correlation between the observed CR/CRi rate after idarubicin (IDA) and cytarabine (CYT) 3 + 7 induction and the leukemic chemosensitivity measured by an ex vivo test of drug activity. Bone marrow samples from adult patients with newly diagnosed AML were included in this study. Whole bone marrow samples were incubated for 48 h in well plates containing IDA, CYT, or their combination. Pharmacological response parameters were estimated using population pharmacodynamic models. Patients attaining a CR/CRi with up to two induction cycles of 3 + 7 were classified as responders and the remaining as resistant. A total of 123 patients fulfilled the inclusion criteria and were evaluable for correlation analyses. The strongest clinical predictors were the area under the curve of the concentration response curves of CYT and IDA. The overall accuracy achieved using MaxSpSe criteria to define positivity was 81%, predicting better responder (93%) than non-responder patients (60%). The ex vivo test provides better yet similar information than cytogenetics, but can be provided before treatment representing a valuable in-time addition. After validation in an external cohort, this novel ex vivo test could be useful to select AML patients for 3 + 7 regimen vs. alternative schedules

    Synthesis and characterization of triangulene

    Get PDF
    Triangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized1. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons2. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity1, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core3, 4 and verification of the triplet ground state via electron paramagnetic resonance measurements5. Here we show the on-surface generation of unsubstituted triangulene that consists of six fused benzene rings. The tip of a combined scanning tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor molecules. STM measurements in combination with density functional theory (DFT) calculations confirmed that triangulene keeps its free-molecule properties on the surface, whereas AFM measurements resolved its planar, threefold symmetric molecular structure. The unique topology of such non-Kekulé hydrocarbons results in open-shell π-conjugated graphene fragments6 that give rise to high-spin ground states, potentially useful in organic spintronic devices7, 8. Our generation method renders manifold experiments possible to investigate triangulene and related open-shell fragments at the single-molecule level

    Ba+2 ion trapping using organic submonolayer for ultra-low background neutrinoless double beta detector

    Get PDF
    If neutrinos are their own antiparticles the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay can occur. The very long lifetime expected for these exceptional events makes its detection a daunting task. In order to conduct an almost background-free experiment, the NEXT collaboration is investigating novel synthetic molecular sensors that may capture the Ba dication produced in the decay of certain Xe isotopes in a high-pressure gas experiment. The use of such molecular detectors immobilized on surfaces must be explored in the ultra-dry environment of a xenon gas chamber. Here, using a combination of highly sensitive surface science techniques in ultra-high vacuum, we demonstrate the possibility of employing the so-called Fluorescent Bicolor Indicator as the molecular component of the sensor. We unravel the ion capture process for these molecular indicators immobilized on a surface and explain the origin of the emission fluorescence shift associated to the ion trapping

    Genomic mutation profile in progressive chronic lymphocytic leukemia patients prior to first-line chemoimmunotherapy with FCR and rituximab maintenance (REM)

    Get PDF
    Chronic Lymphocytic Leukemia (CLL) is the most prevalent leukemia in Western countries and is notable for its variable clinical course. This variability is partly reflected by the mutational status of IGHV genes. Many CLL samples have been studied in recent years by next-generation sequencing. These studies have identified recurrent somatic mutations in NOTCH1, SF3B1, ATM, TP53, BIRC3 and others genes that play roles in cell cycle, DNA repair, RNA metabolism and splicing. In this study, we have taken a deep-targeted massive sequencing approach to analyze the impact of mutations in the most frequently mutated genes in patients with CLL enrolled in the REM (rituximab en mantenimiento) clinical trial. The mutational status of our patients with CLL, except for the TP53 gene, does not seem to affect the good results obtained with maintenance therapy with rituximab after front-line FCR treatment
    corecore