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Abstract Nest predation is a key source of selection for

birds that has attracted increasing attention from or-

nithologists. The inclusion of new concepts applicable to

nest predation that stem from social information, eaves-

dropping or physiology has expanded our knowledge

considerably. Recent methodological advancements now

allow focus on all three players within nest predation in-

teractions: adults, offspring and predators. Indeed, the

study of nest predation now forms a vital part of avian

research in several fields, including animal behaviour,

population ecology, evolution and conservation biology.

However, within nest predation research there are impor-

tant aspects that require further development, such as the

comparison between ecological and evolutionary an-

tipredator responses, and the role of anthropogenic change.

We hope this review of recent findings and the presentation

of new research avenues will encourage researchers to

study this important and interesting selective pressure, and

ultimately will help us to better understand the biology of

birds.

Keywords Animal behavior � Conservation biology �
Evolution � Nest predation � Population ecology

Introduction

Predation is one of the most important selective pressures in

nature, shaping evolutionary relationships in many systems

including birds (Caro 2005). The life of all birds is charac-

terized by a critical stage in which they are bound to a par-

ticular location, the nest. The selective pressures acting

during this period modulate their biology to a large extent.
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Thus, it is not surprising that nest predation is considered a

key source of selection for birds (Martin 1995).

Early arguments that nest predation can exert strong

selection on species coexistence, habitat selection and life

history strategies were met with skepticism (Ricklefs

2000). Avian ecology had focused on food limitation for a

long period (Lack 1947; reviewed in Martin 1987, 1991),

but a series of important papers championed the impor-

tance of predation (i.e. Moreau 1944; Skutch 1949; Martin

1988a, b, 1991, 1992, 1993a, b). Methodological im-

provements and new ecological perspectives have

prompted many studies over the past 15 years, and these

clearly demonstrate the importance of predation. For ex-

ample, technology now allows researchers to monitor nests

24 h a day, which provides access to the identity and for-

aging behaviour of nest predators (e.g. Weidinger 2008;

Benson et al. 2010). Advancements in our ability to mea-

sure physiological processes allow a better mechanistic

understanding of the effects of nest predation risk, and the

potential trade-off among different physiological systems

within individuals (Zanette et al. 2014). Recent investiga-

tions on social information use by birds within communi-

ties have opened exciting new perspectives within this field

(Dall et al. 2005; Seppänen et al. 2007; Schmidt et al.

2010). Furthermore, development of a more general pre-

dation framework has provided important new research

challenges regarding nest predation, such as quantifying

the magnitude of non-consumptive effects (the ecology of

fear: Lima 1998; Cresswell 2008; Zanette et al. 2011).

Indeed, the study of nest predation now forms a vital part

of research in different areas, including animal behaviour,

population ecology, evolution and conservation biology.

Our objectives are to highlight the relevance of nest

predation within ornithology, discuss recent findings in the

field, and address priorities for future research. Our aim is

not to provide a comprehensive review; there are relatively

recent reviews that cover different aspects of this field

within the larger context of predation risk (Martin and

Briskie 2009; Lima 2009; Magrath et al. 2010; Zanette

et al. 2014). Rather, we provide insight into recent ideas

and research that explore new aspects related to nest pre-

dation, or old aspects in light of recent conceptual ad-

vancements. We focus on studies directly addressing, or

with clear implications to, nest predation, therefore not

presenting those investigating predation in a broader sense.

Adult antipredator strategies

Pre-nesting antipredator strategies

Spatial and temporal variability in the risk of nest predation

creates uncertainty for individuals about the quality of

breeding territories or nesting sites. An informed breeding

site choice can increase the probability of reproductive

success, making settlement decisions vitally important. In-

deed, predator removal experiments show that birds respond

to the presence of predators by altering settlement decisions

(Fontaine and Martin 2006), and also alter settlement to

experimental changes in habitat that alter predation risk

(LaManna et al. 2015). How birds acquire information about

nest predation risk before selecting nest sites is a topic of

increasing research. In this section we explore the cues or

information that individuals use to assess spatial and tem-

poral heterogeneity in nest predation risk prior to settling for

breeding and nest initiation. Understanding these cues pro-

vides insight into how nest predators can structure avian

communities and demography.

Cues provided by nest predators

Indirect proximate cues of predator activity may be used by

settling birds to avoid areas with nest predators. Avian prey

respond to acoustic cues from predators (e.g. Zanette et al.

2011) and brood parasites (Forsman and Martin 2009), so

that acoustic cues may provide reliable information about

the presence of nest predators. For example, ground-nest-

ing passerines eavesdrop on communication calls of

Chipmunks (Tamias striatus), with lower nest densities

found near playback sites (Emmering and Schmidt 2011).

Acoustic cues of potential nest predators have also been

shown to affect Siberian Jay (Perisoreus infaustus) and

Orange-Crowned Warbler (Vermivora celata) decisions

about nest location decisions (Eggers et al. 2006; Peluc

et al. 2008). Natural environments can have several dif-

ferent predators, and birds appear able to incorporate

acoustic cues of predators of both adults and nests during

settlement (Hua et al. 2013).

Birds use olfactory cues and light reflected in the UV

range in many activities, such as mate choice and foraging

(reviewed in Hagelin and Jones 2007; Roth et al. 2008;

Rajchard 2009; Caro and Balthazart 2010). Recent studies

suggest that such cues may be important in settlement

decisions too, particularly for detecting nest predator spe-

cies that are non-vocal and nocturnal. At the territory scale,

settling passerines and ducks avoided areas experimentally

treated with nest predator urine and faeces, which

simulated predator presence (Eichholz et al. 2012; Forsman

et al. 2013). Similar cues may be used by ground-nesting

Wood Warblers (Phylloscopus sibilatrix), which appear to

avoid outbreaks of rodents that may in turn attract high

densities of nest predators (Wesołowski et al. 2009;

Szymkoviak and Kuczyński 2015). Indeed, several studies

have used urine of potential nest predators sprayed onto

nest boxes as a nest predator treatment, and have found

responses consistent with a perceived increase in risk of
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nest predation (Amo et al. 2008, 2011; Mönkkönen et al.

2009; Morosinotto et al. 2012). For example, nest boxes

sprayed with mustelid urine are avoided (Mönkkönen et al.

2009). The mechanism used by birds to detect urine (odour,

UV reflectance or both) is currently unknown. Research

should focus on determining what cues are detected and

used by settling birds to decrease probability of nest

predation.

Protector species

Species vulnerable to nest predation may nest near ag-

gressive species or predators that provide protection

against nest predators (reviewed in Quinn and Ueta 2008).

Protector species may serve as cues for low nest predation

rates and may affect settlement decisions aimed at gaining

safe nesting sites. Despite the generally clear reproductive

benefits such associations entail (see Appendix 1 in Quinn

and Ueta 2008), surprisingly few studies have experimen-

tally demonstrated active choice in nest site selection in

this context. Protective associations do not necessarily

entail attraction at only small spatial scales; settling forest

songbirds appear to preferentially select intermediate

‘‘optimal’’ distances from avian predator nests where the

protective benefits against nest predators can represent a

trade-off with the direct costs of being near the protector

species (Thomson et al. 2006; Mönkkönen et al. 2007).

Also bird species within the same guild may associate with

each other during breeding to gain protective benefits

(Kleindorfer et al. 2009; Campobello et al. 2012; Polak

2014); to date, these within-guild breeding associations

have likely been overlooked, and deserve more attention in

future. It would be fruitful to determine if prey actively

choose to associate with other species for protection at

different spatial scales, and the mechanisms involved in

such associations, especially given the recent emphasis on

positive interactions in avian communities.

The value of apparently protective associations may be

dependent on the environmental context, and ‘protected’

nests may become prey when the abundance of alternative

prey for the ‘protective’ predator declines (Dunn 1977;

McKinnon et al. 2014). For example, fluctuating prey

densities in different years appeared to alter the protection

benefits to ground nests provided by Ural Owl (Strix

uralensis; Häkkila et al. 2012), which may also attract

mesopredators seeking protection. This can in turn increase

nest predation rates for ‘protected’ species (Morosinotto

et al. 2012). Associations between species may also entail

reciprocal protective relationships, for example the mixed

breeding colonies of Lesser Kestrels (Falco naumanni) and

Jackdaws (Corvus monedula) where both species decrease

vigilance when in mixed colonies (Campobello et al.

2012). Overall, the use of protector species and their

impact on territory and nest site selection is probably un-

derestimated, and might prove to be an important tool in

species management (Fletcher 2008).

Assessing the success of others

Settling birds may use the presence or success of conspecifics

and heterospecifics as proxies of nest predation risk.

Assessing territories and nest sites both during (Parejo et al.

2008; Thomson et al. 2013) and following breeding attempts

may affect breeding location decisions the following year

(Boulinier and Danchin 1997; Doligez et al. 2002; Pärt et al.

2011). Prior to breeding, later arriving individuals can also

assess the quality and success of earlier conspecific and

heterospecific birds, and select nest sites that have features

associated with success (Seppänen and Forsman 2007;

Seppänen et al. 2010; Loukola et al. 2012).

Personal success as information

Birds can use personal reproductive performance as a guide

to future habitat selection (e.g. Chalfoun and Martin 2010a;

Pakanen et al. 2014). The ‘‘win–stay:lose–switch’’ strategy,

proposed by Hildén (1965) and Greig-Smith (1982), sug-

gests that individuals should return to a breeding site if

successful, but leave if not. This hypothesis was originally

tested in relation to patch-scale fidelity (e.g. Bollinger and

Gavin 1989; Hoover 2003), a scale at which it might be an

evolutionary stable strategy (Schmidt 2001). However, the

win–stay:lose–switch rule is likely to operate at multiple

scales, including within patches (Chalfoun and Martin

2010a; Kearns and Rodewald 2013), where individuals can

reuse or change nest sites both between and within years.

The win–stay:lose–switch rule is also simplistic in some

contexts because individuals are likely to benefit from

taking a longer view of success than just the most recent

breeding attempt. For instance, Piper (2011) has suggested

the concept of site familiarity, in which individuals gain

‘private value’ based on their broader experience within a

site. Similarly, individuals might follow a Bayesian up-

dating rule that is cumulative over different nest attempts

(Schmidt and Whelan 2010), which could be particularly

important if individuals renest multiple times within a

season (Pakanen et al. 2014). And as a Bayesian process,

the posterior estimate of habitat quality accounts for the

other information on distribution of quality among sites or

habitats. These possibilities could be tested because, for

instance, the Bayesian rule predicts birds will be less likely

to alter habitat selection as a result of recent failure if they

have a higher prior estimate of site quality, which could be

manipulated experimentally.

Last, assessing conspecific success (see section

‘‘Assessing the success of others’’) can be seen as the
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extension of using personal success as information, and the

two strategies may co-occur (Doligez et al. 2003) or the

latter may supplement personal success, especially in

colonial breeders (Boulinier and Danchin 1997).

Understanding individual habitat selection strategies,

however, is not the same as understanding breeding habitat

selection at the population level. As a result of frequency-

dependent feedback from the action of other individuals a

population may consist of individuals using different

strategies. For example, those used by information pro-

ducers or scroungers (Doligez et al. 2003), strategies which

may be contingent on success or the fidelity of conspecifics

(Pärt et al. 2011), and different strategies based on the

effort (e.g. time) invested in collecting information which

will depend on the intensity of competition for breeding

sites (Schmidt et al. 2015).

One potentially fruitful approach to look beyond indi-

vidual strategies is through the analogy of choosing a

coloured ball (or balls at the population level) from an urn

under the constraint that sampling is without replacement

and (i.e. choice of breeding site) is biased. Information

from pre- or post- and personal or conspecific breeding

cues, or any inherent preference, is reduced to sampling

bias (Schmidt et al. 2015). This approach is amenable to a

game-theoretical analysis of breeding habitat selection that

extends to investigating the ecological and evolutionary

consequences of environmental change. For example, as

population densities decline in degraded environments in-

dividuals are expected to invest more time in information

gathering and exhibit greater bias toward selecting good

sites. This suggests that information-gathering strategies

have the capacity to ameliorate environmental change

(Schmidt et al. 2015).

Antipredator strategies during the nesting stage

After settlement decisions are made, parents can adjust

their breeding strategies in response to changes in nest

predation risk (reviewed in Martin and Briskie 2009). In-

deed, many of these proximate shifts in parental care be-

haviours have been the focus of recent studies, such as

changes in incubation patterns (e.g. Chalfoun and Martin

2010b; Ibáñez-Álamo and Soler 2012; Morosinotto et al.

2013a) and offspring provisioning rates (e.g. Zanette et al.

2011; Ghalambor et al. 2013; Mutzel et al. 2013; Hua et al.

2014). The norm regarding these parental care traits is to

reduce activity in response to increased predation risk, at

least in ecological time. See below for the contrast between

these responses and those obtained in evolutionary time.

Although the increased risk of predation has a pre-

dictable effect on incubation patterns and provisioning

rates, it is less clear how risk affects egg mass and clutch

size. There is a trade-off between egg size and number

(Smith and Fretwell 1974) and are both expected to de-

crease under increased nest predation risk (Martin et al.

2006; Martin and Briskie 2009). Despite this, recent studies

on temperate passerine birds that experimentally ma-

nipulated predation risk found contrasting results. For ex-

ample, Fontaine and Martin (2006) found that when

predation risk was higher, females of eight species did not

change clutch size but laid smaller eggs, which caused

lower clutch masses. Conversely, other studies found a

reduction in clutch size (Eggers et al. 2006; Travers et al.

2010; Zanette et al. 2011; Hua et al. 2014), and an increase

in egg mass (Zanette et al. 2011) or no change in clutch

mass (Hua et al. 2014) when predation risk was increased.

The discrepancies among these results highlight the need

for further tests. Changes in clutch size are potentially

favoured over changes in egg mass since a decrease in

clutch size represents a more significant decrease in energy

investment—with fewer eggs to produce, incubate, and

young to feed—than changes in egg mass (Martin et al.

2006). The dissimilar results found by Fontaine and Martin

(2006), where birds adjusted egg mass but not clutch size,

may be explained by a key methodological difference

among experiments. Unlike the other four studies that in-

creased risk, Fontaine and Martin (2006) decreased risk for

eight species. Increases in clutch size with decreased risk

represents a substantial increase in reproductive effort and,

thus, may be constrained, whereas species may more

readily decrease clutch size and associated reproductive

effort when risk increases. Effects of opposing directions of

risk on reproductive output have not been directly tested.

Furthermore, species that already have very small clutch

sizes, such as those in the tropics, may be constrained and

less likely to further decrease clutch size in response to

predation and may instead show changes in egg mass

(Martin et al. 2006). These ideas require further testing to

elucidate which factors may constrain or modulate parental

responses in egg investment to changes in nest predation

risk.

Offspring antipredator strategies

In contrast to their parents, who have active antipredator

strategies, offspring are often seen as passive victims.

Skutch beautifully captured this image of defenceless

young when he wrote of naive nestlings begging when

disturbed: ‘‘Doubtless they greet in this trustful manner the

snake or squirrel that comes to devour them’’ (Skutch

1976). In this section we show that while young are cer-

tainly vulnerable, they are not helpless, but instead engage

in a variety of behaviours to thwart predators. We focus

particularly on the relatively recent issue of how young

gain information about current risk from multiple sources,
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including parents, predators and from other prey species.

We suggest that research will benefit from taking a nest-

ling’s view of the world.

Antipredator behaviour

Young can thwart predators in a diversity of ways, in-

cluding by reducing the risk of detection, recruiting par-

ents, actively repelling predators, and fleeing (reviews:

Skutch 1976; Martin 1992; Lima 2009; Magrath et al.

2010). Nestlings can reduce the risk of detection by

crouching low in the nest and becoming silent if a predator

is near, and begging calls themselves can be difficult for

predators to overhear or locate, or young may beg silently

(Wegrzyn and Leniowski 2015). Young can recruit parents

through loud distress calls, which might also warn siblings.

Distress calls could also repel predators, and some young

appear to deter predators by mimicking dangerous species,

such as Burrowing Owls (Athene cunicularia) producing

sounds that resemble rattlesnakes (Rowe et al. 1986;

Owings et al. 2002), and Northern Flickers (Colaptes au-

ratus) sounding like a hive of bees (Wiebe and Moore

2008); however, these ideas remain to be tested (Dalziell

et al. 2014). Nestlings can also use chemical defence (re-

views: Dumbacher and Pruett-Jones 1996; Hagelin and

Jones 2007). For example, Eurasian Hoopoe (Upupa

epops) nestlings produce malodorous fluid from oil-glands

and eject liquid faeces against potential nest predators

(Glutz Von Blotzheim and Bauer 1980). The effectiveness

of chemical defence has recently been experimentally

tested for young Eurasian Rollers (Coracias garrulus),

which vomit a cocktail of chemicals that deters dogs

(Parejo et al. 2013), and for Great Spotted Cuckoos (Cla-

mator glandarius), which defend themselves with a cloacal

secretion containing a mixture of chemicals that deters both

mammalian and avian predators (Canestrari et al. 2014).

Finally, older nestlings commonly ‘‘explode’’ from the nest

and seek cover if the nest is attacked.

Gathering information

When young have several options available, the choice of

which defensive strategy to deploy may depend on the type

of threat, opening up new opportunities for research on the

perceptual and decision-making abilities of nestlings. Here

we focus on information gained from sound, as this is

valuable even before their eyes are open, as well as in

enclosed nests or dense cover.

Information from parents

The most obvious source of information is from parents,

whose alarm calls can warn young of danger (reviews:

Martin 1992; Caro 2005; Magrath et al. 2010). Nestlings

commonly become silent after playback of parental alarm

calls, showing that young respond to the signals them-

selves. Although responding to parental calls might seem a

‘‘passive’’ response compared to their parents’ ‘‘active’’

delivery of calls, communication requires the evolution of

both signals and responses (Maynard Smith and Harper

2003), so the behaviour of young is best seen as active use

of available information.

The active role of young in response to parental calls is

best illustrated by differences in behaviour according to the

type of danger or stage of development. Most dramatically,

Great Tits (Parus major) respond differently depending on

the type of parental alarm call, and therefore type of threat

(Suzuki 2011). Young crouch at the bottom of their nest

cavity when parents warn of crows, but flee the nest when

parents give a different alarm call warning of snakes. These

contrasting responses make sense because crows can reach

into cavities but cannot enter nests, so crouching can avoid

a probing beak, whereas snakes can enter nests and so

young must flee. Similarly, White-Browed Scrubwren

(Sericornis frontalis) nestlings become silent in response to

parental mobbing calls warning of predators on the ground,

but ignore aerial alarms to raptors flying overhead (Platzen

and Magrath 2005). This difference is consistent with their

vulnerabilities, because nests are cryptic, enclosed struc-

tures, placed on the ground and invisible from above. As

soon as young leave the nest, however, they become highly

responsive to aerial alarms (Magrath et al. 2006).

Information from predators

In addition to relying on calls from parents, young could

gather information on risk from predators themselves.

Adult vertebrates often recognize the vocalizations or other

cues of predators (Hettena et al. 2014), but there is ex-

tremely little known about young. However, young birds

can use acoustic cues from predators. Most White-Browed

Scrubwren nestlings become immediately silent in re-

sponse to playback of the sound of a predatory bird

walking in leaf litter near the nest, which is similar to their

response to parental alarm calls (Magrath et al. 2007). This

response appears specific to the context of predation, since

non-alarm vocalizations of parents and a variety of novel

sounds prompt little or no call suppression in nestlings

(Haff and Magrath 2010). This raises unanswered questions

of generality and mechanism.

Information from other species

As well as listening to parents and detecting predators di-

rectly, young can gain information by eavesdropping on the

alarm calls of other prey species, but it is not yet clear if
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this is widespread. Eavesdropping on species with shared

predators should be beneficial, and it could also be com-

mon, given that the adults of many species do eavesdrop on

heterospecific alarm calls (reviews in Seppänen et al. 2007;

Goodale et al. 2010; Magrath et al. 2014).

Among the few species studied, young nestlings usually

respond only to conspecific alarm calls unless

heterospecific alarm calls are very similar (e.g. Davies

et al. 2004; Madden et al. 2005; Haff and Magrath 2012),

but older nestlings may also respond to dissimilar

heterospecific alarm calls. For example, White-Browed

Scrubwren nestlings respond to the mobbing calls of con-

specifics and one acoustically similar species when young,

but respond to two other species with acoustically different

calls later in the nestling period (Haff and Magrath 2012).

There is a similar pattern among fledglings. Recently

fledged young ignore heterospecific aerial alarm calls but

do respond 2 weeks later, unless the heterospecific is rare

on the territory (Haff and Magrath 2013). This suggests

that young learn to recognize the alarm calls of common

heterospecifics.

The predator point of view

In addition to adults and offspring, there is a third player in

nest predation events: the nest predator. The predator

perspective has been partially neglected in studies of pre-

dation risk (Schmidt 1999; Chalfoun et al. 2002a, b; Lima

2002). Within nest predation research, however, predators

gain focus in part because cameras permit non-stop

monitoring of bird nests. This allows for predator identi-

fication (Cox et al. 2012a), and an understanding of how

predators find nests (Pelech et al. 2010). Nevertheless,

there is minimal knowledge of many aspects of nest

predator foraging habits, the mechanisms of locating nests,

interactions between nest predators and habitats, and the

importance of nest contents as food to individual predators

(but see Schmidt et al. 2001; Schmidt and Schauer 2007).

Monitoring of bird nests has permitted individual

predator species to be identified, and their prevalence and

role in nest losses to be quantified (Cox et al. 2012a, b).

Nest monitoring by cameras seems to be generally safe for

nests (Weidinger 2008; Richardson et al. 2009; Ibáñez-

Alámo et al. 2012), but validating this assumption in

specific studies is important. Predator identification should

be a critical starting point to studies investigating nest

predation responses of a species or community to nest

predation (e.g. Weidinger 2009). Knowing predator iden-

tity allows for better understanding of the selective pres-

sures influencing parental and offspring antipredator

strategies. Both cameras and dataloggers can provide in-

sight into temporal patterns of predation, both within a day

(e.g. crepuscular, diurnal, nocturnal) and during the nesting

cycle (Libsch et al. 2008; Biancucci and Martin 2008;

Weidinger 2010). Predators may have different preferences

or abilities to handle nest contents, such as in the case of

highly specialized egg-eating snakes (e.g. Gartner and

Greene 2008) or raptors that may prefer to eat nestlings

over eggs (Cox et al. 2012b), which may in turn favour

completely different antipredator adaptations. Indeed, non-

specific nest predation data obscure potentially important

aspects of the ecology of predators that limit understanding

of avian responses to nest predators (Benson et al. 2010).

Certainly some nest predation events are opportunistic

(Schmidt 2004), but nest predators can use prior experience

to learn nest site locations (Sonerud and Fjeld 1987; Pelech

et al. 2010; Weidinger and Kočvara 2010).

Nest predators likely use a variety of predator-specific

strategies and cues to find nests. Parental activity is one

visual cue predators use to find nests. Several studies show

that parents decrease activity under increased nest preda-

tion risk (see ‘‘Ecological versus evolutionary strategies’’).

The conspicuousness of the nests itself or the colours of the

eggs may also attract the attention of visually oriented

predators (Cott 1940; Tinbergen et al. 1962; Weidinger

2001; Kilner 2006; Biancucci and Martin 2010; Stoddard

et al. 2011). Acoustic cues are generated around nests and

are used by predators, and nesting birds respond by de-

creasing these cues in high risk situations (see ‘‘Offspring

antipredator strategies’’). Begging nestlings may attract

predators (e.g. McDonald et al. 2009; Haff and Magrath

2011; Ibáñez-Álamo et al. 2012), and novel research sug-

gests that nestlings of some species with high nest preda-

tion risk may beg silently (Węgrzyn and Leniowski 2015).

Mobbing calls by parents at or near nests can also attract

predators (Krama and Krams 2005; Krams et al. 2007;

Bonnington et al. 2013), and indeed all acoustic commu-

nication by birds near the nest may be risky (Haff et al.

2015). Olfaction too has received recent attention. For

example, alien predator Black Rats (Rattus rattus) can use

odour to find bird nests, and this can be exploited as a

management tool (Price and Banks 2012). Exposing rats to

nest odours in an area prior to placing artificial nests caused

non-associative learning that decreased subsequent nest

predation rates. However, the presence of an obvious

source of odour in nests, faecal sacs, did not seem to in-

crease nest predation risk in blackbirds (Ibáñez-Álamo

et al. 2013, 2014).

For birds nesting in environments with multiple nest

predators, the challenge for parents and offspring is to limit

the availability of cues used by predators. Understanding

and quantifying the relative importance of these predation

mechanisms will reveal how predation risk varies spatially

and temporally, and improve our understanding of parental

and offspring responses to changes in risk. In addition, nest
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predators may actively hide inadvertent information of

their presence (e.g. Loukola et al. 2014), and so open novel

co-evolutionary pathways between birds and nest

predators.

Physiological effects of nest predation

The physiological mechanisms by which predation could

shape traits of animals have gained increasing attention in

recent years, although they are still poorly understood

(Sheriff and Thaler 2014). This is also true for nest pre-

dation, which constitutes only a small proportion of studies

in birds (reviewed in Zanette et al. 2014), with most focus

on behavioural or evolutionary changes instead (see above

and below respectively). Nevertheless, the physiology of

antipredator strategies is important because it allows the

measurement of previously unconsidered costs, and may

reveal interactions between nest predation and other se-

lective pressures (e.g. Schwabl et al. 2007; Coslovsky and

Richner 2011a).

Effects on adults

The most studied physiological effects of nest predation are

on adult hormonal modifications. For example a com-

parative study including six North American passerines

found that species with higher nest predation risk had

higher baseline corticosterone levels, but this effect was not

maintained at the intraspecific level as adults did not

change their corticosterone levels when nest predators were

removed from experimental areas (Fontaine et al. 2011).

Similarly, other studies failed to find changes in hormone

levels after experimental manipulation of nest predation

risk (Silverin 1998; Butler et al. 2009). In contrast, Song

Sparrow (Melospiza melodia) adults subjected to frequent

nest predation or breeding in risky areas did increase their

corticosterone levels (Clinchy et al. 2004, 2011; Travers

et al. 2010). The results suggest that there is no general

pattern in adult hormonal response to nest predation risk,

probably due to the costs associated with some hormones

(e.g. Kitaysky et al. 2003; Saino et al. 2003).

Antipredator behaviour could also place energetic de-

mands on parents. Reduced food intake of ‘‘fearful’’ adults

or lower male feeding of incubating females could affect

their physiological state (Fontaine and Martin 2006; Zanette

et al. 2013). Furthermore, changes in offspring development

rates due to nest predation risk might reduce (i.e. fewer

parental care behaviours) or increase adult energetic de-

mands too (i.e. through maternal effects; see below), an

interesting possibility that is worthy of further research.

Changes in the immune system or in oxidative stress

might be other physiological costs of nest predation. In

fact, Song Sparrows when breeding in areas of high per-

ceived nest predation risk showed an increase in basophils,

but no elevation in heterophil to lymphocyte ratio sug-

gesting that only some components of the immune system

are affected by this selective pressure (Clinchy et al. 2004).

Furthermore, frequent nest predation suppresses the im-

mune system of female Song Sparrows, perhaps as a re-

sponse to the threat of predation or the increased cost of

egg production (Travers et al. 2010). These two studies

also found increased oxidative stress in response to nest

predation, which is consistent with the response to preda-

tion risk in general (reviewed in Constantini 2014). Nev-

ertheless, more experimental studies across different

species are needed to generalize about patterns of changes

in the immune system or antioxidant protection. Com-

parative analyses will be especially valuable.

Effects on offspring

Direct effects of nest predation on offspring

The impact of nest predation risk on the endocrine system of

nestlings seems to depend on the cues they perceive. Direct

acoustic cues of nest predators decreased corticosterone but

increased testosterone levels in the Common Blackbird

(Turdus merula), suggesting that hormones might mediate

begging activities according to perceived risk (Ibáñez-

Álamo et al. 2011). However, conspecific alarm calls did not

modify hormonal profiles in other species (Dufty and

Crandall 2005; Rivers et al. 2011), and nestling distress calls

produced elevated corticosterone levels only in older nest-

lings (Fridinger et al. 2007; Tilgar et al. 2010). This high-

lights the relevance of offspring age in the ability to respond,

at least physiologically, to nest predation risk.

The immune system and risk of nest predation seem to

be linked in nestlings. The cell-mediated immune response

of Campo Flicker (Colaptes campestris) nestlings affects

their ultimate antipredator strategy when captured by a

potential predator: individuals with higher immune ability

give louder distress calls, which could indicate a healthier

status aimed at attracting potential adult defenders

(Goedert et al. 2014). Part of the nestling immune system

seems to be impaired by nest predation; the heterophil to

lymphocyte ratio increased when chicks were exposed to

conspecific nestling distress calls, suggesting that they

were physiologically stressed (Tilgar et al. 2010). Never-

theless, it is still untested whether other less extreme ma-

nipulations could elicit changes in the immune response of

offspring. For a broad understanding of these effects it is

important to quantify not only single measures of the im-

mune system but also different components simultaneously

as recommended by experts in the field of ecoimmunology

(e.g. Matson et al. 2006).
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Nest predation effects on offspring mediated by adults

Risk posed by nest predators can affect offspring physiol-

ogy indirectly through their effects on parents, such as

through maternal effects (e.g. Martin and Schwabl 2008).

Adult predation risk may affect the performance of off-

spring (e.g. Coslovsky et al. 2012), but only two studies

have tested the effect of nest predation risk itself. For ex-

ample, high levels of testosterone and 5a-dihydrotestos-

terone in eggs are positively correlated with nest predation

risk in 25 songbirds (Schwabl et al. 2007). Moreover, Pied

Flycatchers (Ficedula hypoleuca) laying eggs in sites with

nest predator cues transferred more immunoglobulins to

their eggs while lysozyme and carotenoid levels remained

unchanged (Morosinotto et al. 2013b). These results sug-

gest that mothers could be preparing offspring for an en-

vironment with a high risk of nest predation. However, a

distinction between allocation (adaptive) and transfer (non-

adaptive) is needed, as female flycatchers under adult

predation risk also show higher immunoglobulin levels

(Thomson et al. 2010), and therefore the adaptive sig-

nificance of these changes in egg composition remains

unknown.

In addition to maternal effects on egg composition,

adults could affect the energetic demands of their offspring

by means of changes in their incubation or brooding pat-

terns (Martin et al. 2007; Martin and Schwabl 2008) or in

their food delivery (see below). These parental effects, in

turn, may interact with trade-offs in development of phe-

notypic traits to influence embryo and nestling development

(e.g. Coslovsky and Richner 2011b; Cheng and Martin

2012; Martin 2014). Indeed, despite the strong relationship

between development strategies and the risk of nest pre-

dation (von Haartman 1957; Remeš 2007; Martin et al.

2007, 2011) the underlying physiological mechanisms need

further work. It is also important to consider differences

between ecological and evolutionary responses, as the

physiological traits that could be modified might differ.

Ecological versus evolutionary strategies: time
scale matters

The influence of nest predation risk on the expression of

life-history traits can reflect both proximate responses via

phenotypic plasticity and evolved responses (reviewed in

Martin and Briskie 2009). Proximate responses through

phenotypic plasticity can allow fine-tuned responses to

changing risk in ecological time. However, the extent of

phenotypic adjustments can be constrained by trade-offs

related to the evolved expression of traits, which differ

among species (Martin and Briskie 2009). Moreover, the

fitness consequences of shifts in a trait can differ

dramatically in ecological versus evolutionary time (Martin

et al. 2015).

Phenotypic plasticity responses to nest predation risk of

the same trait can clearly differ among species. For ex-

ample, several songbird species responded to a taxidermy

model of a nest predator by decreasing the rate at which

they fed their young (Ghalambor et al. 2013). On its own,

this result is not surprising since several experiments have

demonstrated decreased provisioning with increases in nest

predation risk (reviewed in Martin and Briskie 2009; see

also: Zanette et al. 2011; Mutzel et al. 2013; Hua et al.

2014). However, species differed strongly in the degree of

their plasticity responses to the perception of increased nest

predation risk (Ghalambor et al. 2013). This variation in

plasticity across species highlights issues for further work.

First, plasticity itself (or reaction norms) can evolve dif-

ferentially among species and may be related to intensity of

nest predation risk (reviewed in Martin and Briskie 2009;

Ghalambor et al. 2013). For example, species that use

relatively safe cavity nests may exhibit less plasticity than

species that use riskier open-cup nests. Second, the extent

of plasticity may also differ because of constraints imposed

by trade-offs with other traits. For example, provisioning

plasticity in response to nest predation risk may be con-

strained by food needs of growing nestlings, and also

modified by the number of nestlings and their evolved

growth rates (Martin et al. 2011; Mutzel et al. 2013). Third,

fitness costs of proximate changes in expression of traits

can differ among species as a function of evolved

physiological mechanisms (see below; Martin et al. 2011).

Thus, differences among species in plasticity, and the costs

and trade-offs, remain a relatively unexplored area in need

of more research.

Fitness costs of changes in traits can differ strongly for

proximate versus evolutionary responses, but these differ-

ences have not received sufficient attention. For example,

increased nest predation risk can yield a decrease in pro-

visioning rate in both ecological time through plasticity

(reviewed in Martin and Briskie 2009; also Zanette et al.

2011; Mutzel et al. 2013; Hua et al. 2014), and in evolu-

tionary time as seen among species (Martin et al. 2000,

2011). Reductions in provisioning in response to increased

predation risk in ecological time can yield poorer quality

and slower growth of nestlings (e.g. Zanette et al. 2011).

Increased nest predation is expected to favour faster growth

in evolutionary time (Lack 1948; Bosque and Bosque

1995; Martin 1995; Remeš and Martin 2002), and species

with greater nest predation risk evolve faster growth and an

associated reduction in provisioning rates (Martin et al.

2011). The reduction in food delivery in high risk species

compared with low risk species does not carry the costs

observed from reduced food delivery in ecological time.

The costs of reduced food delivery in ecological time
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within a species cannot be easily ameliorated because the

developmental program (interaction and trade-offs among

physiological and morphological traits) has evolved as an

integrated whole. Over evolutionary time, however, trade-

offs among physiological and morphological traits can shift

to facilitate faster growth despite reduced food (Cheng and

Martin 2012).

Another example of the differences in fitness costs of

shifting traits in ecological versus evolutionary time is

provided by further consideration of growth rate. Evolution

of faster growth, as expected from increased nest predation

risk, is thought to create physiological costs that lead to

greater adult mortality and shorter life (McCay 1933; Rollo

2002; Metcalfe and Monaghan 2003). Tests within species

have demonstrated shorter life with proximate increases in

growth rates (e.g. Rollo 2002; Olsson and Shine 2002; Lee

et al. 2013). Yet, comparisons across species showed no

relationship between growth rate and adult mortality rates

(Martin et al. 2015), potentially because changes in growth

rate over evolutionary time can allow evolutionary shifts in

other traits, such as the fatty acid composition of mito-

chondrial cell membranes, which can offset physiological

costs of faster metabolism and growth (e.g. Hulbert et al.

2007). Such physiological systems are likely much less

plastic in ecological time, and thereby create constraints

that impose costs to shifts in growth rates in ecological

time that are not observed in evolutionary time.

Of course, shifting traits even in evolutionary time can

come with costs related to trade-offs among traits and,

thereby, influence evolution of other traits. For example,

bird species that evolved under greater risk of nest preda-

tion may shorten the time they stay in the nest, and young

may leave the nest (fledge) at an earlier developmental

state (von Haartman 1957; Martin 2014). While leaving the

nest quickly might minimize nest predation risk, the re-

duced developmental state may also create costs to survival

of young after they leave the nest, as well as parental effort

in raising those young, all of which might influence evo-

lution of clutch size (Martin 2014). These interactions

among traits and their fitness costs can influence evolution

of life-history strategies and constrain the extent of phe-

notypic plasticity in tests of responses to changing preda-

tion risk within species.

Finally, life-history trait responses to nest predation in

both ecological and evolutionary time may be modulated

by differences among species in adult mortality. Life-his-

tory theory suggests that life-history strategies should re-

spond to age-specific mortality (e.g. Law 1979; Michod

1979; Charlesworth 1980; Martin 2002, 2004). In par-

ticular, parental effort is expected to increase with in-

creasing adult mortality, but decrease with increasing

offspring mortality (Law 1979; Michod 1979; Charles-

worth 1980; Martin 2002, 2004). This interplay of adult

and offspring mortality on expression of life-history traits

has received insufficient attention.

Human impacts and conservation issues of nest
predation

Habitats worldwide continue to change rapidly, which can

alter historic predator–prey relationships. Human-induced

rapid environmental change can result in habitat loss,

habitat fragmentation and/or alteration of remaining habitat

patches, all of which can alter nest predation risk in com-

parison to contiguous patches of similar habitat devoid of

human interference. Patterns of nest predation in relation to

various forms of anthropogenic change, however, have

been mixed. A huge body of literature, for example, has

focused on nest survival in relation to different types of

habitat edges, with varied and context-specific results (e.g.

Lahti 2001; reviewed for tropical areas in Vetter et al.

2013). Urbanization and agricultural activities can influ-

ence nest predation, especially via the provision of food

subsidies to predators. The directionality of such effects,

however, depends on the main predators and whether

subsidies translate into higher or lower nest predation

pressure (Tomiałojć 1979; Chace and Walsh 2006; Benson

et al. 2010; Ibáñez-Alámo and Soler 2010a; Rodewald

et al. 2011). In some cases, management activities geared

towards other species, such as ungulate feeding stations,

can attract nest predators and inadvertently increase nest

predation risk (Selva et al. 2014). Extraction of energy

resources continues to be an expanding human land use,

and has also yielded contrasting nest predation patterns.

Nest predation rates of three sagebrush songbirds (Hethcoat

and Chalfoun 2015) and the Greater Sage-Grouse (Cen-

trocercus urophasianus; LeBeau et al. 2014) increased

with natural gas and wind energy development, whereas

other energy development studies suggest neutral (Hatchett

et al. 2013) or even positive (Rubenstahl et al. 2012) re-

lationships between energy development and nest preda-

tion. Recent ground-breaking work suggests that noise

pollution is one of the factors by which energy develop-

ment (and other human activities) can alter local trophic

and predator–prey dynamics (Francis et al. 2009, 2011).

The presence of humans alone can have varying effects

on nest predation rates. Adelie Penguin (Pygoscelis adeli-

ae) hatching success and chick survival decreased with

recreational visits by humans as a result of an increase of

nest predation by skuas (Giese 1996). Nest predation has

been invariant with respect to other indices of human

presence and activity, however, such as proximity to

recreational trails (e.g. Lindsay et al. 2008). Potential in-

vestigator effects on rates of nest predation have been a

concern in nest survival studies, so that ambient nest
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survival rates are documented accurately. Investigator ef-

fects, however, have been rare (Ibáñez-Alámo et al. 2012)

and for some species, inversely related to nest predation

(e.g. Ibáñez-Alámo and Soler 2010b).

The introduction of alien species is another human ac-

tivity that typically increases nest predation. For example,

the introduction of rats and other non-native mammals has

been responsible for the extinction and endangerment of

many birds through their nest predation activities, espe-

cially for burrow-nesting birds and those on islands (re-

views: Steadman 2006; Jones et al. 2007). Feral cats are a

particularly pervasive problem as predators of bird nests

and adult birds (Nogales et al. 2013). Eradication of non-

native predators is often extremely challenging, and the

success of eradication programs can depend on other fac-

tors, such as whether all non-native predator species are

simultaneously removed to eliminate compensatory nest

mortality (Oppel et al. 2014).

To understand how anthropogenic change and human

disturbance affect nest predation requires knowing the

ecology of nest predators (Chalfoun et al. 2002a, b;

Thompson and Burhans 2003; Weatherhead and Blouin-

Demers 2004; Benson et al. 2010; DeGregorio et al.

2014a). A wide variety of species depredate bird nests

(Ribic et al. 2012), with different relative importance of

each nest predator for each bird species (Rodewald and

Kearns 2011; Cox et al. 2012b; Hethcoat and Chalfoun

2015). In fact, even the relevance of a single nest predator

can vary among habitats (Thompson and Burhans 2003;

DeGregorio et al. 2014b). Moreover, different nest predator

species respond uniquely to habitat change (Chalfoun et al.

2002a, b; Marzluff and Neatherlin 2006). A critical first

step in mechanistic studies of nest predation in human-

altered environments is therefore the identification of the

major nest predator species, which while logistically

challenging, pays large dividends in terms of understanding

nest predation risk (Rodewald and Kearns 2011; Cox et al.

2012b, c; Ribic et al. 2012). Increased nest predation can

result from multiple pathways, including increased preda-

tor abundance, activity and/or effectiveness. Simultaneous

study of nest predation rates and nest predator abundance

and/or behaviour across the same habitat gradients has

therefore clarified mechanistic pathways of nest predation

dynamics (Marzluff and Neatherlin 2006; Francis et al.

2009; Benson et al. 2010; Rodewald and Kearns 2011; Cox

et al. 2012b, c; DeGregorio et al. 2014a, b). Further in-

vestigations of the prevalence and effectiveness of parental

and offspring nest defence tactics to particular nest

predators in altered environments (Ribic et al. 2012;

Bonnington et al. 2013) would also lead to a more holistic

understanding of the contexts under which anthropogenic

change is likely to elevate or reduce nest predation risk.

Climate change will impose additional complexity in

terms of clarifying the causes of nest predation. Where

ectothermic predators such as snakes are important,

warming temperatures may increase nest predation rates

(Cox et al. 2013; DeGregorio et al. 2014b). Over the long

term, however, the influence of climate change will likely

affect nest predation rates synergistically with other envi-

ronmental stressors, and will depend on shifts in the dis-

tribution and behaviour of co-occurring predators and prey.

Many frontiers remain in terms of understanding how nest

predation dynamics will be affected by human-induced

rapid environmental change such as climate change. Such

frontiers will likely only be successfully conquered via

careful study of the interactions between predators, prey

and habitats.

Biases that currently exist in nest predation
research

Future research in nest predation should address remaining

biases including methodological approaches, focal species

and study regions. Utilization of artificial nests is still

widespread among the scientific community (e.g. Vetter

et al. 2013; Selva et al. 2014) even though artificial nests

often produce unrealistic patterns of nest predation (e.g.

Weidinger 2001; Zanette 2002; Moore and Robinson

2004). The use of artificial nests can provide complemen-

tary and useful information for addressing some questions

(e.g. Villard and Pärt 2004; Price and Banks 2012) and

does allow one to test interesting hypotheses once specific

nest predators of interest have been identified. Reduction of

the costs of using camera technology should offer oppor-

tunities to investigate nest predator communities as well as

nest predation patterns using real (and active) nests rather

than artificial nests.

Passerines seem to be the focus of a disproportionate

amount of nest predation studies. There is a general lack of

investigations in other groups of birds (i.e. charadriiforms),

which could provide significant information in some topics

like the effect of coloniality or antipredator strategies of

non-altricial species. Two recent studies with non-passer-

ines show that attention on other groups of birds may help

advance our understanding of nest predation. For example,

Eurasian Roller nestlings have shown active chemical de-

fence against nest predators, something not previously

confirmed for passerines (Parejo et al. 2013). Furthermore,

a study with the Great Spotted Cuckoo found that the an-

tipredator repellent secretion produced by chicks of this

species can benefit parasitized host nestlings, changing a

classic brood parasitic relationship into a mutualistic in-

teraction (Canestrari et al. 2014).
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As expected, a geographic bias also exists in nest pre-

dation research. Most studies focus on forested temperate

regions, while tropical regions are underrepresented (Vetter

et al. 2013). Increasingly some research groups are focus-

ing work in tropical areas (e.g. Martin et al. 2000, 2015;

Ghalambor and Martin 2001; Shaw and Cresswell 2014),

but we urge scientists with access to these and other

relatively unstudied areas (i.e. boreal regions or arid

habitats) to initiate the collection of baseline nesting and

nest predator data.

Conclusions and future directions

Here we present a brief overview of the most important

remaining frontiers in nest predation research. From the

adults’ point of view, knowledge of the full suite of cues

and the mechanisms involved in nest site selection is

lacking, and may be instrumental to future conservation

planning. Additionally, factors influencing variation in the

degree or direction of parental care responses to changes in

nest predation risk are not yet well understood. In par-

ticular, inconsistent results across studies investigating

parental investment in egg size and number given changes

in nest predation risk highlight the need for further testing.

A comparative experimental approach may help elucidate

what factors constrain or favour plasticity in these two

traits across species.

An offspring perspective also offers opportunities for

further research. Young take an active role in managing the

risk of predation by gathering relevant information about

risk from parents, predators and other species, and respond

appropriately according to their capability, vulnerability

and the type of threat. Future studies in nest predation will

be especially valuable if they focus on the development and

ecological significance of eavesdropping, and the impor-

tance of direct assessment of danger. Another promising

line of inquiry regarding offspring is the effect of maternal

effects on nestling responses, as a source of prenatal in-

formation about risk. Females exposed to predator cues

before laying can have nestlings that differ in physiology or

behaviour, which could be at least partly an adaptive re-

sponse to risk.

In addition, the study of nest predation will be also

greatly enhanced via additional study of predators. Im-

portant nest predator species must be identified and not just

assumed. The mechanisms of nest site detection by

predators, moreover, and potential strategies prey use to

avoid eavesdropping seem to be particularly promising

future lines of inquiry.

Furthermore, our understanding of nest predation effects

on individual physiology is still in its infancy. A more

complete comprehension of the mechanisms underlying

adaptive antipredator strategies will require integration of

ecological and physiological approaches. In doing so, more

species should be investigated, with a special emphasis on

offspring physiological changes. It will be useful to also

integrate new ways of exploring the impact of nest pre-

dation, for example through the use of neurobiology

(Clinchy et al. 2013), other cues (i.e. visual) in ex-

periments, or the inclusion of additional immunological

indexes. But possibly the most crucial contribution will be

to investigate whether physiological changes (for adults or

young) are adaptive.

From a more general perspective, differences in an-

tipredator responses between ecological and evolutionary

time deserve more attention. Interspecific comparative

studies in trait responses to nest predation will complement

our general understanding of factors influencing phenotypic

plasticity of prey. For example, a comparative approach can

help uncover potential costs associated with changes in nest

predation risk that may constrain the degree of the response.

Additionally, costs associated with selection of one trait can

cascade down to influence traits across different life stages

(e.g. Martin 2014). A focus on the demographic conse-

quences of nest predation risk interacting with other impor-

tant population level processes will also be important (e.g.

Zanette et al. 2011; Sofaer et al. 2014), as they are crucial to

detect the adaptive value of antipredator responses.

Finally, from a conservation standpoint, improved un-

derstanding of the mechanisms underlying variation in nest

predation risk will be particularly critical in areas with hu-

man-induced habitat change. Such understanding will ben-

efit from concomitant study of important nest predators and

prey, across relevant habitat gradients and spatial scales.

Other challenges regarding nest predation research that still

remain are the study of other bird groups beyond passerines

or other geographical areas different from the most com-

monly studied forested temperate regions. We hope that the

forthcoming years will be fruitful in expanding our knowl-

edge about this crucial selective force for birds.
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Häkkila M, Halme P, Koskela E (2012) Could fluctuating prey

availability change protective nesting associations in forest

birds? A hypothesis. J Ornith 153:199–203

Hatchett ES, Hale AM, Bennett VJ, Karsten KB (2013) Wind turbines

do not negatively affect nest success in the dickcissel (Spiza

americana). Auk 130:520–528

Hettena AM, Munoz N, Blumstein DT (2014) Prey responses to

predator’s sounds: a review and empirical study. Ethology

120:427–452

Hethcoat MG, Chalfoun AD (2015) Energy development and avian

survival in Wyoming, USA: a test of a common disturbance

index. Biol Conserv 184:327–334

Hildén O (1965) Habitat selection in birds. Rev Ann Zool Fenn

2:53–75

Hoover JP (2003) Decision rules for site fidelity in a migratory bird,

the prothonotary warbler. Ecology 84:416–430

Hua F, Fletcher RJ Jr, Sieving KE, Dorazio RM (2013) Too risky to

settle: avian community structure changes in response to

perceived predation risk on adults and offspring. Proc R Soc

Lond B 280:20130762

Hua F, Sieving KE, Fletcher RJ, Wright CA (2014) Increased

perception of predation risk to adults and offspring alters avian
reproductive strategy and performance. Behav Ecol 25:509–519

Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life

and death: metabolic rate, membrane composition, and life span

of animals. Physiol Rev 87:1175–1213
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