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Triangulene, the smallest triplet ground state polybenzenoid (also known as Clar’s hydrocarbon),

has been an enigmatic molecule ever since its existence was first hypothesized1. Despite containing

an even number of carbons (22, in 6 fused benzene rings), it is not possible to draw Kekulé-style

resonant structures for the whole molecule: any attempt results in two unpaired valence

electrons2. Synthesis and characterization of unsubstituted triangulene has not been achieved

because of its extreme reactivity1, although the addition of substituents has allowed the

stabilization and synthesis of the triangulene core3, 4 and verification of the triplet ground state via

electron paramagnetic resonance measurements5. Here we show the on-surface generation of

unsubstituted triangulene consisting of six fused benzene rings. The tip of a combined scanning

tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor

molecules. STM measurements in combination with density functional theory (DFT) calculations

confirmed that triangulene keeps its free molecule properties on the surface, whereas AFM

measurements resolved its planar, threefold symmetric, molecular structure. The unique topology

of such non-Kekulé hydrocarbons results in an open-shell π-conjugated graphene fragments6 which

give rise to high-spin ground states potentially useful in organic spintronic devices7, 8. Our

generation method renders manifold experiments possible to investigate triangulene and related

open-shell fragments at the single-molecule level.

Figure 1 illustrates the generation of triangulene from a mixture of dihydrodibenzo[cd,mn]pyrene

isomers (2, also denoted as dihydrotriangulenes) as precursor molecules. Compound 2 was deposited

on Cu(111), NaCl(100), and Xe(111) surfaces to generate triangulene (1) by means of atomic

manipulation. STM/AFM is an ideal combination to study on-surface synthesis ranging from

individual molecules9, 10 to graphene nanoribbons11, 12. The chemical structure of reactants and

products can be resolved by means of AFM with functionalized tips13. Even molecules too elusive to

be studied by other means14, 15 can be stabilized by using an ultrathin insulating film as a decoupling
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layer. A decoupling layer also facilitates studying the frontier molecular orbitals of the free molecule

by means of STM and scanning tunnelling spectroscopy (STS)16.

Figure 2 presents STM and AFM images of four different molecular species of compound 2 adsorbed

on NaCl. As expected, different isomers of dihydrotriangulene are observed. This observation can be

discussed by a comparison of Fig. 2e and Fig. 2f, showing the non-equivalent isomers 2a and 2b which

we found on the surface, respectively. Because the former isomer is prochiral with respect to

adsorption, we also observed its surface enantiomer (see Supplementary Fig. 5). Note that 2a is about

three times more abundant than the highly symmetric 2b, although two Clar sextets can be drawn

for both species. This difference can be rationalized by the resonance energy of its aromatic

benzo[c]phenanthrene core, which is slightly greater than the sum of the resonance energies of the

anthracene and benzene cores for 2b isomers2. Furthermore, the resonance energy of an aromatic

pyrene core for structures 2c or 2d (not observed in the experiment) is appreciably lower. These

considerations are consistent with similar observations for benzo[cd]pyrenes17 and are also

confirmed by DFT calculations favouring 2a by 21 meV over 2b, but by 207 meV over 2c isomers (see

Supplementary Table 1). Thus, we anticipate that we measured an ensemble of molecules

representative of compound 2. We also observed oxidized species comprising a ketone group (Figs.

2g, h) in addition to the dihydro-isomers. A ketone group can be identified by its dark (more

attractive) appearance in the AFM images as known from studies on 6-oxo-6H-benzo[cd]pyrene17, 18.

Remarkably, the ketone 3 in Fig. 2g represents an oxidized structure of 2 that was already reported

by Clar and Stewart1. A comparison of STM and AFM data reveals that in the STM images a tiny sharp

kink arises at the position of a single CH2 group. In contrast, a ketone group leads to a fainter bulge

in STM images (Figs. 2c, d) and a lower contrast of the hexagon involved. The central carbon of the

three adjacent CH2 group in 3 adopts the expected tetrahedral bond angle for sp3 carbon leading to

sharp ridges in both STM and AFM mode (Figs. 2c, g) because of strong tilting of the CO molecule at

the tip apex.

We dehydrogenated promising candidates (2a and 2b molecules) to obtain triangulene by means of

atomic manipulation14, 15, 19. To this end, we first positioned the tip above a molecule. Then, we

opened the feedback loop and retracted the tip by 0.5 to 0.7 nm to limit the tunnelling current to a

few picoamperes. Finally, we increased the voltage to values ranging from 3.5 to 4.1 V for several

seconds. In many cases, this procedure also resulted in a lateral displacement of the molecule. When

a subsequent STM image indicated a change in the appearance of the molecule, we recorded AFM
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images to obtain its structure. Using this procedure, we did not observe any changes in the molecular

structure other than the removal of single hydrogens from a CH2 groups throughout our experiments.

The C-H bonds within CH2 groups act as predetermined breaking points because their bond

dissociation energy (3.4 eV in 9,10-dihydroanthracene20) is lower than that of corresponding bonds

in CH groups (4.8 eV in benzene21). This atomic manipulation procedure, exemplified by STM and

AFM images shown in Supplementary Fig. 9, proved successful on all investigated surfaces, and was

applied twice to an individual dihydrotriangulene (2) to generate triangulene (1). In some cases, a

single voltage pulse induced dissociation of both hydrogens.

Triangulene (1), retaining D3h symmetry, does not match the square lattice of (100)-oriented NaCl

surfaces22. Although triangulene can be generated on NaCl, the symmetry mismatch leads to

frequent rotations between four equivalent adsorption geometries (see Supplementary Fig. 8). For

this reason, we carried out in-depth characterizations of triangulene on Xe(111) and Cu(111) surfaces

sharing its C3 rotational symmetry. An AFM image of triangulene adsorbed on Cu (Fig. 3a) confirms

the expected C3 symmetry of the molecular structure. The AFM data unambiguously demonstrates

stable adsorption without any signatures of chemical bonding to the supporting Cu surface. Instead,

the brighter appearance (less attractive) of the peripheral carbons suggests a slightly bent adsorption

with the outer carbons further away from the surface, as observed previously for pentacene on

Cu(111)18. This observation is in strong contrast to previously investigated diradicals that form strong

covalent bonds when adsorbed on copper under the same conditions14, 15, and can be rationalized by

the fact that these comprise σ radicals, whereas triangulene features π radicals. Finally, Fig. 3b shows

a similar AFM image of a triangulene molecule adsorbed on Xe. In this case, the frequency shift data

shows less pronounced differences between inner and outer carbons corroborating a planar

molecular structure.

To scrutinize triangulene’s peculiar electronic structure, we performed STS and STM orbital imaging

on Xe16. While a thorough investigation of the spin ground state and excited states is certainly of

great interest, we emphasize that this is beyond the scope of this paper. Here, we restrict ourselves

to a study of triangulene’s frontier molecular orbitals and a comparison to theory.

At this point, before we delve into the experimental results, we present results of spin-polarized DFT

calculations of free triangulene. First, our calculations favour the (ferromagnetic) triplet state over

the (nonmagnetic) closed-shell and (antiferromagnetic) open-shell singlet state by 0.35 eV and 0.16
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eV in energy, respectively. While DFT is appropriate to calculate ground state properties and

energies, STS and STM of electronically decoupled adsorbates probe excited states involving the gain

or loss of an electron. For the excited states, we employ the GW approximation as a first-order

perturbative correction (G0W0; see Methods)23.

We will assume a ferromagnetic alignment of the two unpaired electrons, i.e. a triplet ground state,

but our discussion is similarly valid for the open-shell singlet with an antiferromagnetic alignment.

The resulting quasiparticle energies of the triplet state are shown in Fig. 3c. The frontier molecular

orbitals are two pairs of non-disjoint, degenerate orbitals (ψ2 and ψ3); an occupied pair (spin up) and

an unoccupied pair (spin down). The zero has been adjusted to the experimentally determined work

function of monolayer Xe on Cu(111)24 (because of the lower work function of Xe covered Cu(111)

compared to NaCl covered Cu(111), the peaks are shifted downwards by 0.4 eV on bilayer NaCl on

Cu(111)25, 26; Supplementary Fig. 10). From the level alignment, it is expected that triangulene is

neutral when it adsorbs in its triplet ground state. In that case the same orbital structure is to be

resolved at both voltage polarities corresponding to tunnelling out of (into) ψ2↓(↑) and ψ3↓(↑) at

negative (positive) voltage. The neutral charge state of triangulene is confirmed by the experiment

showing no scattering of interface electrons at triangulene on NaCl and Xe films (Supplementary Fig.

10).

In the alternative scenario of a closed-shell singlet, the frontier molecular orbitals are degenerate

and half-occupied (one electron per spin channel) as shown in Supplementary Fig. 6 and a cationic

charge state would be expected because of charge transfer. While we can therefore rule out the

nonmagnetic closed-shell state, both magnetic states (the ferromagnetic triplet and the

antiferromagnetic open-shell singlet) are compatible with our experimental results.

Fig. 3d shows the differential conductance as a function of voltage, dI/dV(V), recorded above the

centre of a triangulene molecule. There is a broad voltage range in which dI/dV is essentially zero,

and two distinct peaks show up at V = −1.4 V and V = 1.85 V corresponding to the positive and

negative ion resonance, respectively. The satellite features observed at absolute voltages above the

peaks correspond to vibronic replica27, 26, and the negative differential conductance above the NIR

stems from barrier effects16. The broad gap mainly stems from the Coulomb energies associated with

electron removal or addition from or to the same orbitals, respectively28. Importantly, it is

appreciably larger than a pure Coulomb gap for a system of comparable size28, indicative for the
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significant spin-splitting of triangulene.

STM images at voltages corresponding to the positive ion resonance (V = −1.4 V), the gap region (V =

0.1 V), and the negative ion resonance (V = 1.85 V) are presented in Figs. 3, e to g. The image recorded

in the gap region resembles the triangular shape of triangulene. Both orbital images exhibit the same

nodal plane structure, and because we know from our experiments that triangulene is neutral on Xe

and on NaCl29, 30 (see Supplementary Fig. 10) this observation suggests a magnetic ground state on

these surfaces. The wave functions of the degenerate pair of occupied spin-up orbitals (ψ2↑ and ψ3↑)

are plotted in Fig. 3h. Because STM probes probability densities, that is, the square of wave

functions31, we also plot the superposition of their probability densities. Similar plots for the

corresponding spin-down levels, shown in Supplementary Fig. 6, look the same. In addition, Fig. 3i

shows a simulated STM image, calculated by assuming an extended s-like wave function for the tip29

(see Supplementary Fig. 7). The simulated image matches well the experimental orbital images at

both polarities and proves that we probe the superposition of ψ2↑ and ψ3↑. Likewise, in the open-

shell singlet case a superposition of ψ2↑ and ψ2↓ looks the same. That is yet another indication that

we generated unsubstituted triangulene with two unpaired electrons. Importantly, DFT calculations

of triangulene adsorbed on monolayer Xe on Cu(111) confirm the triplet ground state (see

Supplementary Note 1).

We emphasize that our experiments demonstrate generation of stable (at our experimental

conditions), unsubstituted triangulene adsorbed on three different materials, two insulator surfaces

(NaCl, Xe), and, unexpectedly, also on a metal (Cu) surface. The yield of the on-surface generation

method presented could likely be improved by further minimizing the time the precursor is exposed

to air. Triangulene and its derivatives provide an ideal system to explore the spin-excitations within

a single molecule32, the coupling of spins between neighbouring molecules33, the lifetime of spin

states by electron paramagnetic resonance experiments34, and are promising candidates for

spintronic applications7, 8. In particular, it will be of great interest to exhibit (e. g. by spin-polarized

STM) how the triplet ground state of triangulene is affected by its chemical environment, for example

by bringing magnetic atoms close by or adsorption on ferromagnetic surfaces.
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Figure Captions

Figure 1: Scheme illustrating the generation of triangulene 1.

Removal of two H atoms by means of atomic manipulation from dihydrodibenzo[cd,mn]pyrene (2) results in

triangulene (1). Isomers 2a and 2b are energetically most favourable, while 2c and 2d are possible isomers

with higher energies. Structures 3 and 4 show related ketones. Aromatic cores are highlighted.

Figure 2: Comparison of different molecular species on NaCl.

a-d, STM images (imaging parameters I = 1 pA, V = 0.1 V) of four molecular species acquired with CO-

terminated tips (CO tips). e-h, Corresponding AFM images (constant-height offsets with respect to the STM

set point above NaCl were ∆z = −1.4 Å, −1.65 Å, −1.3 Å, and −2.1 Å, respectively) are shown below. Scale bars, 

5 Å.

Figure 3: Characterization of triangulene on Cu and Xe.

a,b, AFM images of triangulene on Cu (∆z = 1.66 Å, Isp = 2 pA, Vsp = 0.1 V) and Xe (∆z = −0.82 Å, Isp = 1 pA, Vsp =

0.1 V), respectively. c, Energy level scheme derived from spin-polarized DFT calculations in the G0W0

approximation. d, STS performed at the centre of a triangulene molecule on Xe showing the tunnelling current

(red) and the differential conductance dI/dV (blue) as a function of voltage. e-g, STM images at voltages

corresponding to the positive ion resonance (PIR), the gap region, and the negative ion resonance (NIR),

respectively (I = 2 pA). h, Plots of the DFT-calculated wave functions ψ2↑ and ψ3↑ and the sum of their

probability densities (|ψ2↑|2 + |ψ3↑|2). i, Simulated STM image of degenerate orbitals ψ2↑ and ψ3↑ probed with

a s-like tip wave function ψS. Scale bars, 5 Å.
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Methods

Synthesis

Compound 2 has been synthesized using the procedure presented in Supplementary Fig. 1, and was

immediately transferred to ultrahigh vacuum to minimize its oxidation1. Details on the synthesis and

spectroscopic characterization of all compounds and necessary precursors are given in the Supplementary

Methods.

STM/AFM experiments

The experiments were carried out in a homebuilt combined STM and AFM operating under ultrahigh vacuum

conditions (base pressure p < 10−10 mbar) at a temperature T = 5 K. The microscope was equipped with two

different qPlus sensors35, 36 with eigenfrequencies of f0 = 31036 Hz and 25035 Hz, respectively, a stiffness of k

= 1800 N/m and Q factors on the order of 105. The voltage V was applied to the sample. The AFM was operated

in frequency-modulation mode37 at an oscillation amplitude of A = 50 pm.

STM images were recorded in constant-current mode (closed feedback loop) and show the topography z. AFM

images were performed in constant-height mode (open feedback loop) and show the frequency shift ∆f. A

height offset ∆z with respect to an indicated STM set point above the bare surface (Cu, NaCl, Xe) is given for

each AFM image. Positive height offsets refer to a distance decrease. STS (that is, I(V) curves) was also

performed in constant-height mode. The differential conductance, dI/dV (V), was then obtained by numerical

differentiation of the I(V) signal.

STM and AFM images, as well as numerically obtained dI/dV(V) curves were post-processed using Gaussian

low-pass filters (FWHM corresponding to 4-6 pixels for raw data of 160 × 160 to 640 × 640 pixels).

The tip had been terminated with a CO molecule for all AFM images. STM images and STS spectra were

acquired with metal-terminated tips, except where stated otherwise. CO molecules were picked up from NaCl

islands, or on Xe monolayers (ML) from step edges to two-layer-thick Xe islands.

Sample preparation

Cu(111) single crystals were cleaned by sputtering and annealing cycles. Experiments were performed on the

bare Cu(111) surface, on 2 ML thick islands of NaCl and on 1-ML-thick islands of Xe.

NaCl islands were grown by sublimation from a crucible onto the cleaned Cu(111) surface held at a

temperature of 270 K38. This resulted in (100)-terminated NaCl islands of 2 to 3 ML thickness.

Closed-packed Xe films were grown by Xe adsorption onto the Cu(111) crystal while the sample was inside the

microscope head at temperatures below 15 K. A background Xe pressure of 2x10−5 mbar was maintained in
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the UHV chamber, and a shutter to the microscope head was opened for about 30 s. This resulted in Xe islands

of 1 to 2 ML thickness.

Precursor molecules (2) were thermally sublimed in a two-step procedure. First, the compound was filled into

crucibles made from tantalum directly after synthesis, which were inserted into the load-lock of the UHV

chamber, and evacuated to a pressure better than 10-4 mbar. To minimize oxidation, the entire process was

carried out speedily, taking less than 30 minutes in total from synthesis until evacuation. Next, the compound

was sublimed from the crucible onto a mobile evaporator in the load-lock (at p 10−8 mbar) of the UHV

chamber. Then, this evaporator was introduced into the STM chamber (p < 10−10 mbar), and the compound

was deposited by means of flash sublimation onto the cold sample (below 10 K) placed in the microscope

head. In addition, low coverages of CO molecules (for tip preparation) were dosed onto the cold sample.

DFT calculations

DFT calculations39 were performed using the FHI-aims code with numerical atomic orbitals as the basis

functions40 and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional41 was applied for all

calculations. A van der Waals method (Tkatchenko-Scheffler)42 combined with the Lifshitz-Zaremba-Kohn

theory for the non-local Coulomb screening within the bulk for the Cu substrate43 was used. The default tight

basis sets were used for all calculations, except for the calculations of free triangulene, for which the really-

tight sets were used. The GW method23, 44, 45 was applied to account for many-body effects. This approach has

been reported to accurately predict band gaps of graphene nanoribbons46 or molecules47, 48.

The total energies, electron densities and molecular orbitals were calculated for the free molecules

(triangulene and hydrogenated derivatives, see Supplementary Table 1 and Supplementary Fig. 2) and the

adsorption geometries for triangulene on 1 ML Xe on Cu(111), which is shown in Supplementary Fig. 3. Plots

of the projected density of states for free triangulene in its different magnetic states and for triangulene

adsorbed on Xe are shown in Supplementary Fig. 4.

The energy of the (ferromagnetic) triplet state was calculated by performing unrestricted spin-polarised

energy minimization. To select the (antiferromagnetic) open-shell singlet state two spatially separated initial

magnetic moments of opposing sign were defined. To select the (nonmagnetic) closed-shell singlet state the

spin of the entire unit cell was constrained to a spin multiplicity of one or spin-unpolarised calculations were

performed. In all cases the geometry was optimized independently until the atomic force components per

atom converged to less than 10−4 eV/Å.

The slab to model the (111) surface consisted of four layers of Cu. The (x, y, z) dimension of the hexagonal cell

was (15.30 Å, 15.30 Å, 50 Å). The Xe layer and the two topmost Cu layers were fully relaxed. The first Brillouin

zone was sampled by 2x2 k-points.
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Supplementary Methods

Experimental synthetic chemistry: synthesis of precursor molecules 2

Reactions were carried out at room temperature unless otherwise stated. Column

chromatography purifications were carried out using silica gel LC60A40-63 micron. Melting

points were recorded twice on a Stuart SM10 instrument. Infrared spectra were recorded

on a Perkin-Elmer paragon 1000 FT-IR spectrophotometer. Hydrogen and carbon NMR

were recorded on a Bruker Advanced DRX-500 MHz, Fourier transform spectrometers and

all samples were submitted in deuterated CDCl3 unless otherwise stated. Coupling constant

values J are rounded to the nearest 0.5 Hz. Hydrogen-decoupled carbon NMR spectra were

taken using PENDANT (polarization enhancement during attached nucleus testing), HMQC

(heteronuclear multiple quantum coherence) and COSY (correlation spectroscopy) to

further assist in compound analysis. Mass spectra were obtained on a micrOTOF 87

instrument using mass electrospray ionization with positive ion polarity unless otherwise

stated.
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Supplementary Fig. 1. Scheme illustrating the synthesis of compound 2. For the STM/AFM

experiments, the last step (from c to 2) was carried out directly before putting the compound into the

load-lock of the apparatus.

3,3-Di-o-tolyl-1,3-dihydro-2-benzofuran-1-one (a)

This method was taken from previous literature1,49 and the data is consistent with ref. 49.

Dry diethyl ether (170 ml) was added to magnesium turnings (8.82 g, 0.363 mol) under a

nitrogen atmosphere via a cannula. The solution was refluxed and 2-bromotoluene (40 ml,

0.330 mol) was added drop-wise and the solution was left to reflux for a further 3 hours. In

a separate flask, dry toluene (280 ml) was added via a cannula to solid phthalic anhydride

(20 g, 0.130 mol) under a nitrogen atmosphere. The o-tolylmagnesium bromide was then

slowly added into the phthalic anhydride solution via a cannula and the reaction was left to

reflux for a day and a half. The reaction was cooled and quenched with 2M HCl (250 ml) on

an ice bath. The organics were collected and washed with water (3 × 200 ml), dried with
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sodium sulphate and organics were removed under vacuum to provide a crude viscous

orange residue.

The viscous orange residue was dissolved in ethanol (250 ml), hydrazine monohydrate was

added (8.6 ml) and the reaction was refluxed for 24 hours. Ethanol was removed under

vacuum and the solid was collected and washed with cold ethanol (3 × 20 ml), which was

subsequently left to dry in a desiccator to obtain a pure off-white powder (9.25 g, 22%).

IR spectroscopy

νmax = 1755 (C=O ester), 1597 (C=C), 1463 (CH deformations), 1118, 691 (benzene rings) cm -1.

Melting point

Tmp = 171 °C to174 °C.

1H NMR data (500 MHz, CDCl3)

δH 7.96 (1H, d, J = 7.5 Hz, H-3), 7.68 (1H, td, J = 7.5, 1.0 Hz, H-5), 7.56 (1H, td, J = 7.5, 0.5 Hz,

H-4), 7.39 (1H, d, J = 7.5 Hz, H-6), 7.23 (2H, td, J = 7.5, 1.0 Hz, H-12), 7.17 (2H, br. d, J = 7.0 Hz,

H-13), 7.09 (2H, td, J = 7.5, 1.0 Hz, H-11), 7.02 (2H, dd, J = 8.0, 0.5 Hz, H-10), 2.14 (6H, s, H-15)

ppm.

13C NMR data (125 MHz, CDCl3)

δC 170.0 (C-1), 151.3 (C-7), 138.8 (C-9), 137.3 (C-14), 133.9 (C-5), 132.8 (C-13), 129.2 (C-4), 128.5

(C-12), 127.1 (C-10), 126.5 (C-2), 125.7 125.7 (C-3, -11), 125.2 (C-6), 94.1 (C-8), 21.5 (C-15) ppm.

Mass spectrometry

m/z calculated 337.1199 for C22H18O2Na (M+Na), found 337.1200.

Di-(o-carboxyphenyl)-phthalide (b)

This method was taken from previous literature1,50 and the data (without NMR) is

consistent with ref. 1.
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KMnO4 (1.26 g, 7.97 mmol, 2.5 eq.) was added portion-wise to a stirring solution of (a) in t-

BuOH/H2O (1:1, 10 ml). The mixture was heated to 70 °C for 2 hours and then the reaction

was cooled to room temperature and more KMnO4 (1.26 g, 7.97 mmol, 2.5 eq.) was added

portion-wise. The solution was then heated to 70 °C and was left to react overnight. The

hot reaction mixture was filtered through a pad of celite and washed through with hot

water. The water in the filtrate was removed under vacuum to approximately 10% of its

original volume. The residue was then acidified in an ice bath with concentrated HCl to pH

2 to form a precipitate. The precipitate was collected and dried in a desiccator to obtain a

crystalline white solid (0.86 g, 72%).

IR spectroscopy

νmax = 3072 (OH), 1745 (C=O ester), 1712 (C=O acid) 1596 (C=C), 1115, 693 (benzene rings) cm -

1.

Melting point

Tmp = 255 °C to 261 °C.

1H NMR data (500 MHz, DMSO)

δH 12.72 (2H, br. s, OH), 7.85 (1H, br. d, J = 7.5 Hz, H-3), 7.80 (1H, br. d, J = 7.5 Hz, H-6), 7.77

(1H, td, J = 7.5, 1.0 Hz, H-5), 7.63 (1H, td, J = 7.5, 1.0 Hz, H-4), 7.48-7.45 (2H, m, H-13), 7.43-7.37

(2H, m, H-11, -12), 7.24-7.20 (2H, m, H-10) ppm.

13C NMR data (125 MHz, DMSO)

δC 169.5 (C-15), 168.9 (C-1), 151.3 (C-7), 137.9 (C-9), 133.9 (C-5), 132.9 (C-14), 129.6 (C-4), 129.5

(C-11 or -12), 129.1 (C-13), 128.2 (C-10 or -11 or -12), 128.1 (C-10 or -11 or -12), 125.7 (C-2), 125.2 (C-

3 or -6), 125.1 (C-3 or -6), 90.5 (C-8) ppm.

Mass spectrometry

m/z calculated 397.0683 for C22H14O6Na (M+Na), found 397.0680.
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4,8-Dioxo-4H,8H-dibenzo[cd,mn]pyrene (c)

This method was taken from previous literature1,4,49 and the data is consistent with ref. 4.

Copper powder (0.22 g, 3.5 mmol) and sulphuric acid (7 ml) were added to (b) (0.77 g, 2.06

mmol) and heated to 120 °C for 2 hours. The mixture was filtered hot through sintered glass.

The solution was cooled and then cold water (5 ml) was added, thereafter the dark blue

precipitate was collected by filtration. The blue precipitate was then dissolved in minimum

dilute 2M NaOH (30 ml) with zinc dust added (1.5 g); the mixture was left to stir under a

nitrogen atmosphere. This was stirred (0.5 to 1 h) until on exposure to air, the solution did

not go back to a dark blue colour when left for about 5 minutes. The solution was then

filtered and air was bubbled through it for approximately 15 minutes where a precipitate

was observed. Concentrated HCl was added and the red solution was partitioned with DCM

(3 × 40 ml), organics were collected and dried with sodium sulphate. The dark red crude

solid was purified by column chromatography (chloroform:ethyl acetate = 9:1) to obtain a

pure red solid (22 mg, 35%).

IR spectroscopy

νmax = 2918, 2848 (CH), 1644 (C=O), 1576 (C=C), 1220, 948, 750 (benzene rings) cm -1.

Melting point

Tmp > 300 °C.

1H NMR (500 MHz, CDCl3)

δH 8.96 (2H, dd, J = 7.0, 1.0 Hz, H-3), 8.84-8.82 (3H, m, H-5, H-12), 8.49 (2H, br. d, J = 8.0 Hz,

H-1), 7.89 (2H, dd, J = 8.0, 7.0 Hz, H-2), 7.81 (1H, t, J = 7.5 Hz, H-6) ppm.

13C NMR data (125 MHz, CDCl3)

δC 182.9 (C-4), 136.3 (C-1), 135.5 (C-4b), 133.3 (C-3 or -5), 133.0 (C-3 or -5), 132.4 (C- 12), 130.9

(C-3a or -12a), 130.7 (C-4a), 128.7 (C-3a or -12a), 128.2 (C-6), 126.7 (C-2), 126.7 (C-12b), 116.7 (C-

4c) ppm.
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Mass spectrometry

m/z calculated 329.0573 for C22H10O2Na (M+Na), found 329.0575.

3,8-Dihydro-3H,8H-dibenzo[cd,mn]pyrene (2)

The method was taken from previous literature and the data is consistent with it 51.

Compound c (20 mg, 0.065 mmol) in dry THF (5 ml) was added drop-wise under a nitrogen

atmosphere to a stirring solution of LiAlH4 (9.90 mg, 0.261 mmol, 4 eq.) and AlCl3 (0.069 g,

0.522 mmol, 8 eq.) in dry diethyl ether (5 ml) in an ice bath. The reaction was then left at

room temperature for 1.5 h to react. The solvent was removed under vacuum, DCM was

added (5 ml), and water and then aqueous HCl (1:3) were added to the reaction sequentially

under a nitrogen atmosphere. The organics were collected and were dried with sodium

sulphate. This was then filtered through a silica plug, and the organics were reduced under

vacuum to produce an air-sensitive, light pink solid (17 mg, 93%).

IR spectroscopy

νmax = 2953, 2919, 2849 (CH), 1585 (C=C), 1231, 930, 751 (benzene rings), 710 (CH2 rocking)

cm-1.

Melting point

Tmp = 182 °C to 185 °C.

1H NMR (500 MHz, CDCl3)

δH 7.94 (1H, d, J = 8.0 Hz, H-5), 7.58 (1H, d, J = 8.0 Hz, H-11), 7.53 – 7.49 (1H, m, H-6), 7.47 (1H,

s, H-4 or 12), 7.41 (1H, dd, J = 7.0, 1.0 Hz, H-7), 7.40 -7.36 (1H, m, H-10), 7.35 (1H, s, H-4 or 12),

7.32 (1H, dd, J = 7.0, 1.0 Hz, H-9), 6.74 (1H, dt, J = 10.0, 2.0 Hz, H-1), 6.18 (1H, dt, J = 10.0, 4.0

Hz, H-2), 4.87 (2H, br s, H-8), 3.90 (2H, br s, H-3) ppm.

13C NMR data (125 MHz, CDCl3)

δC 146.2 (C-3a or -3b or -3c), 134.3 (C-7a), 133.0 (C-8a), 131.1 (C-11a), 129.4 (C-12a), 128.1 (C-8b),

127.9 (C-1), 127.6 (C-4b), 126.2 (C-6), 125.8 (C-2 or -10), 125.7 (C-2 or -10), 125.3 (C-11), 125.1 (C-
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7), 124.8 (C-9), 124.6 (C-3a or -3b or -3c), 123.9 (C-4a), 123.7 (C-4 or -12), 118.0 (C-5), 111.7 (C-3a

or -3b or -3c), 34.2 (C-8), 26.6 (C-3) ppm, *one peak missing due to overlapping peaks (C-4

or -12).

Mass spectrometry

m/z calculated 279.1168 for C22H15 (M+H), found 279.1168.
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NMR spectra of all compounds

1H (top) and 13C (bottom) NMR spectra of compound a.
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1H (top) and 13C (bottom) NMR spectra of compound b.
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1H (top) and 13C (bottom) NMR spectra of compound c.
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1H (top) and 13C (bottom) NMR spectra of compound 2.
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1H (top) and 13C (bottom) NMR spectra of compound 2 after leaving it in a sealed NMR tube in

deuterated chloroform. It only took hours to start oxidizing. After 5 days of oxidation two di-

ketotriangulene species are observed. However, from the NMR data we cannot conclude which

isomers these are.
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Supplementary Note 1: Results of DFT-calculations

Dihydrotriangulene isomers

Supplementary Table 1 presents DFT-calculated energies for 11 dihydrotriangulene isomers

(C22H14, 2a-k in Supplementary Fig. 2). All isomers differ solely in the location of the

hydrogen atoms, whereas the number of carbon (22) and hydrogen (14) atoms is constant

with 146 electrons in the system. Hence, their energies can be readily compared with each

other. We performed calculations for all possible isomers with CH2 groups (i.e. additional

hydrogens at the outer carbons, 2a-g,i). In addition, we considered species with out-of-

plane hydrogens at inner carbon atoms (2h,j,k).

Supplementary Fig. 2: Scheme showing all dihydrotriangulene isomers considered, and the tetrahydro-

triangulene isomer 5 (C22H16) for reference. Aromatic cores are highlighted orange.

The data shows that isomer 2a is energetically most favourable, while 2b is slightly higher

in energy by 21 meV. As discussed in the main text isomers with an aromatic pyrene core

(2c to 2e) are higher in energy by 207 meV to 305 meV. Other isomers pay significantly

higher penalties like, for example, structures 2f and 2g comprising an aromatic

benzo[de]anthracene core (0.631 eV and 0.744 eV higher in energy, respectively).
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Furthermore, we calculated structures 2h and 2j, isomers with one and two out-of-plane

hydrogens, respectively. The non-Kekulé structure 2i has a CH2 group at one of the vertices

and was mentioned in section 2.2. Only non-Kekulé structures exist for out-of- plane

hydrogens at the central carbon atom. Exemplarily, we show structure 2k with the highest

energy in Supplementary Table 1.

Supplementary Table 1: Total DFT energies for all dihydro-triangulene isomers considered. A

checkmark (cross) in the third column means that this isomer was (not) observed during STM/AFM

measurements of approximately 60 examined individual molecules in total. Energies are given relative

to the energy of a 2a isomer (-23039.096 eV).

Structure Energy (eV) Measured Aromatic core
2a 0 ✓ Benzo[c]phenanthrene

2b 0.021 ✓ Anthracene and benzene

2c 0.207 ✗ Pyrene

2d 0.255 ✗ Pyrene

2e 0.305 ✗ Pyrene

2f 0.631 ✗ Benzo[de]anthracene

2g 0.744 ✗ Benzo[de]anthracene

2h 1.133 ✗ Anthracene

2i 1.613 ✗
2j 2.446 ✗

2k 2.612 ✗

Magnetic state of triangulene

For free triangulene, the triplet ground state is 349 meV and 165 meV lower in energy than

the closed-shell and open-shell singlet states, respectively. This sequence of states is

consistent with recent state-of-the-art calculations52,53.

The energy difference between triplet and singlet reduces marginally for triangulene

adsorbed on a layer of Xe on Cu(111) preferring the triplet state by 333 meV over the closed-

shell singlet state. This result shows the efficient decoupling of a single layer of Xe, and

confirms that triangulene is indeed in its triplet ground state. The decoupling of a single

layer of Xe is also substantiated by an adsorption energy of only 0.8 eV, as compared to 2.8

eV for olympicene (C19H12) physisorbed on Cu(111)54. The adsorption energy was calculated

by subtracting the energies of the slab (Cu and Xe) and the free triangulene molecule from

the energy of the combined system (Cu, Xe, and adsorbed triangulene molecule).
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Supplementary Fig. 3: Details of DFT calculations of triangulene adsorbed on 1 ML Xe/Cu(111). a,b,

(c,d,) show renderings for the top (side) views of the relaxed slab and the combined system,

respectively. The vertical distances of triangulene with respect to the Xe layer and the topmost Cu layer

are indicated in panel d.

Supplementary Fig. 3d shows that the equilibrium distance of the molecular plane to the

topmost layer of Cu is 6.93 Å. Another way to prove the efficient decoupling of the Xe layer

is the PDOS plot for triangulene adsorbed on Xe, presented in Supplementary Fig. 4d that

clearly proves that the carbon- and hydrogen-related states are unaffected by the copper-

(and xenon-) related states.
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Supplementary Fig. 4: Species-dependent projected density of states (PDOS) plots (at the Γ point of 

the Brillouin zone) for (a-c) the free molecule in the three possible magnetic states and (d) triangulene

adsorbed on 1 ML Xe on Cu(111). The spin up (down) channels are plotted at the top (bottom) of each

panel.

Observed gap in STS

The observed gap in STS between the PIR and the NIR of triangulene is 3.25 eV. This value

can be compared to DFT calculations of the free molecule including many-body corrections

in the G0W0 approximation. The resulting quasiparticle gap (between the pair of occupied

levels and the pair of unoccupied levels) is 3.78 eV. We attribute the difference between

the calculated gap and the experimentally observed gap to screening from substrate

electrons55, 56.
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Supplementary Note 2: Comparison of AFM data to simulated AFM

images

Supplementary Fig. 5 shows additional experimental data and includes DFT-calculated

charge density maps for all isomers reported in the main text57. The charge density maps

plotted in Supplementary Fig. 5 correspond to slices of the total electron density of each

structure at a height z = 105 pm, where z is defined as the vertical distance to the central

carbon atom of the triangulene core. All maps are drawn with the same colour scale. In

addition, we show simulated AFM images using the numerical model by P. Hapala et al.58

considering the relaxation of a probe particle (in our case, a CO molecule) due to the tip-

molecule interaction. The model is based on empirical Lennard-Jones potentials. The

Lennard-Jones parameters are the same that were used in recent literature59. The atomic

positions were taken from the DFT-calculated geometries. The lateral stiffness of the CO

molecule was set to 0.29 N/m, a value that was determined independently for similarly

sized molecules16,17.

For the purpose of structure identification, the experimental and simulated AFM images

agree well. However, the model underestimates the distortions that arise because of side

groups sticking out from the molecular plane. In line with this observation, the sharpening

of the bonds is also underestimated in the model. We rationalize these discrepancies by

the fact that, experimentally, the stiffness of the CO molecule at the tip apex is not

constant. Rather, the stiffness depends on the tip-molecule interaction and hence will

depend on both the lateral and the vertical position of the tip60.
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Supplementary Fig. 5: Comparison of AFM data with DFT-calculated charge densities and simulated

AFM images. Top rows show electron density maps with molecular models overlaid as a guide to the

eye. Arrows indicate positions of CH2 groups. Middle rows show corresponding AFM data recorded on

NaCl (panels b-e and g) or on Xe (a, f and h). Bottom rows show simulated AFM images. Note that the

AFM data in panels b, d, e, and g were already shown in Fig. 2 of the main text. Scale bars, 5 Å.

Note that the charge density of the bonds in the topmost ring of the 2b isomer shown in

Supplementary Fig. 5d is greater than that for the three rings at the bottom of the same

image. This is consistent with a fixed Clar sextet in the topmost ring and another, but
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migrating, Clar sextet for the anthracene unit. Judging from the AFM data alone,

Supplementary Fig. 5e, which we assign as 3 (C22H14O), could also be compatible with the

non-Kekulé structure 2i (C22H14, see Supplementary Fig. 2). However, there are several

arguments against the latter interpretation. For one, we have frequently observed this

species, but such a structure is energetically unfavourable. Another argument is based on

its non-planar geometry due to three neighbouring CH2 groups in isomer 3: we prevalently

observed the molecule adsorbed with the two outer hydrogens pointing out of the surface

and the central one pointing down on xenon (see Supplementary Fig. 5f; this configuration

is denoted as 3’).
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Supplementary Note 3: Comparison of STM orbital images to

simulated STM images

Supplementary Fig. 6a compares the energy level scheme of the triplet state (reproduced

from Fig. 3c of the main text) to the singlet state. As discussed in the methods section, the

singlet state can be modelled either by means of a spin-polarised calculation with the

multiplicity restricted to one or by means of a non-polarised calculation. It is clear from the

level schemes that both methods give the same result. In the singlet state, levels ψ2 and

ψ3, which are spin-split in the triplet state, are degenerate and half-occupied. It is clear from

their energetic position that the triplet state is favourable for triangulene.

The corresponding single-particle wave functions of the triplet, the open-shell singlet, and

the non-polarized calculation equivalent to the closed-shell singlet are shown in

Supplementary Figs. 6, b to d, respectively. First, it is obvious that the electron wave

functions do not depend on the magnetic state. Second, neither the fully occupied level

ψ1↑↓/ nor the fully unoccupied level ψ4↑↓/ match the STM orbital images of triangulene,

whereas the superposition of the two pairs of non-disjoint, degenerate orbitals |ψ2↑↓/ |2 +

|ψ3↑↓/ |2, shown in Supplementary Fig. 7a, match the STM data.

However, several lobes of the density plot are not resolved in the STM experiments. This

can be explained as follows. Commonly, a point-like tip orbital is assumed for interpretation

of STM images36, but in fact the (metallic) tip exhibits an extended s-wave leading to a

blurring of orbital images18. To account for this, we simulated STM images by computing

the absolute square of the convolution of an explicit tip wave function and the two

degenerate molecular wave functions ψ2 and ψ3. For symmetry reasons, calculating the

overlap integral of two wave functions as a function of their relative displacement is

equivalent to performing a convolution operation31. For the tip, we use a generic s-wave

function ψS. Then, we convolve ψ2 and ψ3, respectively, with ψS. Finally, the absolute

squares of the two resulting convolutions are summed up.
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Supplementary Fig. 6: a, The same energy level scheme of the (ferromagnetic) triplet state shown in

Fig. 3c is compared to similar plots of the (antiferromagnetic) open-shell singlet state in a spin-

polarized calculation and (nonmagnetic) closed-shell a spin-restricted (unpolarised) calculation. In case

of the triplet, ψ2↑(↓) and ψ3↑(↓) are occupied (unoccupied) in the spin-up (spin-down). In case of the

open-shell singlet ψ2↑/↓ is occupied and ψ3↑/↓ is unoccupied. For the closed-shell singlet (and the

equivalent unpolarised), both spin channels are degenerate and ψ2 and ψ3 are half-occupied. b-d, Plots

of the wave functions ψ1, ψ2, ψ3, ψ4, and the respective spin density for each calculation. The spin-up

(spin-down) orbitals are shown in the top (bottom) row of panels b and c. Solid (dashed) rectangles

denote fully (half) occupied levels.

Supplementary Figs. 7, d to f, show contours of constant value of this quantity at three

different isovalues. These should therefore approximate experimental STM images at

three different tunnelling currents. As observed in the STM experiments, several nodal

planes are hidden by the outer lobes at the vertices, and the apparent size of the molecule

increases.
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Supplementary Fig. 7: a, Contours of constant probability density of triangulene’s DFT-calculated

frontier molecular orbitals and the superposition of ψ2 and ψ3. b,c, Probability plots of the s-like wave

function ψS used for the simulated STM images and the superposition of the degenerate molecular

orbitals ψ2 and ψ3, respectively. d-f, Simulated STM images at three different isovalues indicated at

the bottom of each panel.

Note that we critically verified that the extent of the s-wave (plotted in Supplementary Fig.

7b) is rather underestimated by comparing simulated STM images (using the same

parameters) of pentacene’s frontier molecular orbitals to experimental images 18.
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Supplementary Note 4: STM and AFM data of triangulene on NaCl

Supplementary Figs. 8, a and c, present 1H-triangulene, formed by removal of a hydrogen

at position 6 from the 2a species presented in the main text (Fig. 2e) on the NaCl surface,

that is, bilayer NaCl on Cu(111). A subsequent manipulation step to remove one more

hydrogen atom led to the structure in the STM image in Supplementary Fig. 8b with the

molecule appearing four-fold symmetric.

At first glance, this observation seems puzzling because a C4-symmetric molecular species

is unexpected. However, we show below that a superposition of four equivalent

adsorption geometries is measured.

The four-fold symmetry is also apparent in the AFM data in Supplementary Fig. 8d.

Supplementary Fig. 8e shows its curvature to highlight the four distinct regions. We can

explain the images if in each of the quadrants measured, the molecule is in a different

adsorption site. The adsorption site can be obtained by atomically resolved STM data

(Supplementary Fig. 8g). The four quadrants are indicated by the dashed lines in

Supplementary Fig. 8e that correspond to mirror axes of the underlying NaCl surface with

a Na+ site at the crossing point. Taking advantage of this knowledge, a cropped molecular

model of triangulene can be superimposed to match the AFM data in each of the

quadrants. The position of the molecule, when the tip is in the right-hand-side quadrant, is

shown in Supplementary Fig. 8h. If the tip moves to another quadrant, the molecule

rotates into that quadrant accordingly. This interpretation is also supported by features in

the damping signal of the AFM sensor (Supplementary Fig. 8f) recorded simultaneously

with the AFM data. The bright features are a fingerprint of frequent changes of the

molecules’ azimuthal orientation. Accordingly, they appear (i) at the borders of two

quadrants and (ii) when the tip is approaching the molecule from far away triggering

rotations due to the tip-molecule interaction. At positions where dissipation is observed,

the molecule presumably changes its adsorption site as a function of tip height during the

cantilever’s oscillation, with a hysteresis giving rise to dissipation. The effect can be

compared to the similar molecular rotations described by Pawlak and co-workers61.
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Supplementary Fig. 8: STM and AFM of triangulene generation on NaCl. a,b, STM images (CO tip) of

molecule shown in Fig. 2e after the first and second manipulation step, respectively. c,d,

Corresponding AFM images. e, Laplace-filtered version of panel d. Dashed lines indicate mirror axes of

the underlying NaCl surface, and separate the four quadrants of different molecular adsorption sites.

Partially cropped structures of triangulene are overlaid as a guide to the eye in two quadrants. f,

Damping signal of the AFM sensor recorded simultaneously with d. High values correspond to higher

excitation energy. g, Laplace-filtered STM image (CO tip) to determine adsorption site and orientation.

Dashed grid lines connecting the Cl sites are partially superimposed. h, Rendered model of adsorption

geometry, if the tip is in the right-hand-side quadrant of the image. i-l, STM images of a triangulene

molecule acquired with a metal tip. Panels i and j were recorded before and after lateral manipulation

to a step edge of a three-layer-thick NaCl island, respectively. k,l, Zoomed-in images of the same

molecule at low voltage and at the NIR, respectively. m, AFM image of molecule fixed at step edge to

NaCl(3 ML). n-p, STM images (CO tip) of the same molecule at different set points.

Note that the C3 rotational symmetry of triangulene does not match the C4 symmetry of

the underlying NaCl surface. It is possible to break the four-fold symmetry of the substrate

using lateral manipulation24 to move such molecules to a step edge of a three-monolayer-

thick NaCl island. This is illustrated by the STM images in Supplementary Figs. 8, i and j, in
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which the appearance of the molecule changes from fourfold- to threefold-symmetric, that

is, the step edge efficiently blocks full rotations.

However, high-resolution images reveal that adsorption at the step edge is not entirely

stable. Supplementary Fig. 8m is an AFM image of the triangulene molecule fixed at the

step edge. While the top and the right part of the molecular structure appear sharp and

clear, the lower left hexagon is noisy and appears strongly enlarged. We attribute this to

small-angle rotations when the tip is positioned above this region. This phenomenon can

also be seen in the STM images in Supplementary Figs. 8n-p. The rate of abrupt changes in

the topography increases with decreasing tip height, i.e., with increasing tip-molecule

interaction. Thus, our data indicate that the rate of small-angle rotations increases with

decreasing tip-molecule distance.

In conclusion, we have proved that the potential energy landscape of triangulene adsorbed

on NaCl(100) is flat enough to easily overcome the barrier for rotations (25), even though

molecules are probed at zero voltage in AFM mode. In other words, the azimuthal

orientation of the molecule depends on the tip position.
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Supplementary Note 5: Generation sequence of triangulene on

NaCl

Supplementary Fig. 9 shows a typical series of STM and AFM images illustrating the

manipulation procedure of triangulene on NaCl. First, a suitable precursor molecule was

characterized by means of CO tip STM and AFM images (Supplementary Fig. 9, a and b).

Next, the CO molecule was deposited on the bare NaCl surface by atomic manipulation to

re-establish a clean metal tip. Then, after imaging the molecule again with a metal tip in

STM mode (see Supplementary Fig. 9c), dehydrogenation was performed at the position

indicated in Supplementary Fig. 9c by ramping the voltage to 3.5 V. In this particular case,

the maximum current during manipulation was 40 pA. Supplementary Fig. 9d shows a

subsequent STM image acquired with a metal tip demonstrating the apparent four-fold

symmetry of triangulene on NaCl. Finally, the generated triangulene molecule is

characterized by AFM and STM images with a CO tip (Supplementary Figs. 9, e and f).

Supplementary Fig. 9: Generation sequence of triangulene generation on NaCl. a,b, Initial STM and

AFM images (CO tip) of a 2a molecule on NaCl, respectively. c,d, STM images with a metal tip of the

same molecule at the same lateral position before and after a voltage pulse had been applied at the

position indicated by the orange circle. e,f, Final AFM and STM images (CO tip) after successful

generation of triangulene, respectively. Imaging conditions: Isp = 0.8 pA, Vsp = 0.1 V, ∆z = −1.5 Å.  
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Supplementary Note 6: Charge-state determination of triangulene

on NaCl and Xe

Supplementary Fig. 10a shows dI/dV spectra of triangulene on NaCl in comparison to Xe

(reproduced from Fig. 3d). On NaCl, the PIR and NIR peaks are centred at -1.8 V and 1.3 V,

respectively. As expected from the difference in work functions (Xe/Cu(111) = 4.4 eV for 1 ML

Xe/Cu(111)29, NaCl/Cu(111)  4.0 eV for 2 ML NaCl/Cu(111)30), both peaks on NaCl are rigidly

shifted downwards with respect to the spectrum recorded on Xe.

Scattering of interface state electrons can be employed to deduce the charge state of

adsorbates on insulating films34,35. The Shockley surface state on Cu(111) survives as an

interface state for both substrate system used in this work. Charged adsorbates lead to a

standing wave pattern due to scattering of the interface state electrons34,35. An example

of this effect is presented in Supplementary Figs. 10, b and c, showing different adsorbates

(different precursor molecules). Only the adsorbate indicated by a yellow arrow acts as a

scattering centre, indicating that it is possibly charged, while no such features are observed

for the other four adsorbed molecules seen on this image, proving that they are charge

neutral.

Supplementary Figs. 10d-i present STM images of triangulene molecules adsorbed on both

NaCl and Xe. None of them exhibits a standing wave pattern confirming the neutral charge

state of triangulene on both substrates.
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Supplementary Fig. 10: a, STS performed at the centre of a triangulene molecule on NaCl (green) and

on Xe (blue, reproduced from Fig. 3d). Panels b to i show STM images at low voltages. b, Several

precursor molecules on NaCl, out of which only the one marked by a yellow arrow scatters the

interface state electrons. c, Laplace-filtered version of b. d-f, A triangulene molecule on NaCl imaged

with a CO tip, a Cu tip, and the Laplace-filtered version of the latter, respectively. g, Further example

of a triangulene molecule on NaCl. h,i, A triangulene molecule on Xe and its Laplace-filtered version,

respectively. Note that atomic contrast is observed (in d) and standing waves are observed (in g), but

no scattering at the triangulene molecules can be observed, demonstrating their neutral charge state.

Imaging conditions: V = 0.05 V for e-f and V = 0.1 V for all others; I = 2 pA for i and I = 1 pA for all others.
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